Search
Close this search box.

四联、五联、六联疫苗免疫原性与安全性

四联、五联、六联疫苗免疫原性与安全性

基于百白破三联疫苗开发的四联疫苗(DTaP-X):

多项研究结果显示,基于百白破三联疫苗开发的四联疫苗在免疫原性和安全性方面均不逊色于单价疫苗1,2

2007年,为了对中国首个自主研发的DTaP-Hib四联疫苗进行评估,研究者在江苏省盐城市大丰区进行了一项随机、两阶段、平行对照、单中心的临床试验。该试验共有720名婴幼儿入组,并以2: 1的比例随机分配到两组。在第一阶段,干预组的480名受试者分别在3、4和5个月大时接种了3剂DTaP-Hib四联疫苗,而对照组的240名受试者则分别在相同的阶段分别接种的DTaP三联疫苗和Hib单价疫苗。在第二阶段,633名已接种的幼儿(干预组的31名和对照组202名)在18个月大时接种了加强针。研究团队分别在接种首剂疫苗前1周、接种第三针后的四周,接种第四剂加强针前,以及接种第四剂加强针四周后四个时间点采集血清样本。结果显示,干预组的抗百日咳类毒素、抗丝状血凝素、抗白喉类毒素、抗破伤风类毒素和抗多核糖核糖醇磷酸酯血清阳转率与对照组相当。在基础免疫和加强针免疫后,两组受试者几乎100%的受试者都达到了相似的血清保护性水平,两组中不良反应的发生率都很低3。 

在瑞典、意大利、美国等进行的针对DTaP-IPV四联疫苗的随机试验也揭示了类似的结果,在血清保护率和针对每种抗原成分产生的平均抗体水平方面,接种DTaP-IPV四联疫苗组与接种DTaP三联疫苗和IPV单价疫苗的组合结果相当,研究者在两组之间观察到的反应原性也近乎一致4,5

西班牙的研究者在1998年至1999年间进行了另一项试验,共有223名儿童被随机分到DTaP-Hib四联疫苗组和分开接种DTwP三联疫苗及Hib单价疫苗组。试验结果显示,接种DTaP-Hib四联疫苗产生的反应原性明显低于分开接种三联及单价疫苗组,分开接种组报告了更多例局部反应和发热现象,接种四联疫苗对于儿童来说具有更好的反应原性和安全性6

基于麻腮风三联疫苗开发的四联疫苗(MMRV):

已有的研究表明,接种麻腮风水痘四联疫苗与分开接种麻腮风三联及水痘单价疫苗组合相比,在免疫原性和安全性方面表现更优7或相当8,9;一项韩国的研究则发现,干预组仅在流行性腮腺炎抗体水平非劣效性上未达主要终点10。上述研究中,干预组和对照组的不良反应率相当。

2009年至2015年间,一项在欧盟十国进行的、入组超过5000名儿童的试验发现,分开接种麻腮风三联及水痘单价疫苗组与接种麻腮风水痘四联疫苗组在接种后第六年进行随访时,两种接种方式所产生的抗体均对预防水痘感染有效。接种两剂麻腮风水痘四联疫苗对预防所有水痘和中度或重度水痘的有效性分别为 95.0% (95% CI: 93.6-96.2) 和 99.0% (95% CI: 97.7-99.6),接种一剂水痘疫苗对所有水痘和中度或重度水痘的有效性分别为 67.0% (95% CI: 61.8-71.4) 和 90.3% (95% CI: 86.9-92.8)。另外,在试验期间共有422名儿童报告了570例不良反应事件,但经过调查,这些不良反应事件被证实与接种疫苗无关11

也有一些研究显示,麻腮风水痘四联疫苗会在接种初期增加发热惊厥12,13或发热的概率14,15,16。一项多中心、单盲、随机对照试验发现,在接种第一剂疫苗后,麻腮风水痘四联疫苗组有57.4%的受试者出现38℃以上的发热现象,这一比例在麻腮风三联及水痘单价疫苗组的比例是44.5%, 而在麻腮风三联疫苗组中,出现发热现象的受试者略低,为39.8%17

五联疫苗分为两种,一种是百日咳、白喉、破伤风、脊髓灰质炎和b型流感嗜血杆菌疫苗(DTaP-IPV-Hib),而另一类是百日咳、白喉、破伤风、脊髓灰质炎和乙型肝炎疫苗(DTaP-HepB-IPV)。目前的研究证明,接种这两种五联疫苗与分开接种含有相同抗原成分的低联及单价疫苗组合相比,产生的抗体反应相似18,19,20,21。一项纳入九项五联疫苗研究的荟萃分析显示,白喉、百日咳抗体单独接种较联合疫苗接种产生更高的抗体滴度,多数研究发现百日咳、流感嗜血杆菌、脊髓灰质炎、乙肝的免疫水平无差异22。研究也反映接种五联疫苗组注射部位反应较少18,19,21,但研究显示接种联合疫苗后局部反应增加,或在第一剂接种后联合疫苗组发红率更高22

韩国的研究人员进行了一项开放标签多中心研究,42-69天的健康婴儿(1:1随机分组)分别在2、4、6月龄时接种三剂五联疫苗(DTaP-IPV/Hib)或分别接种DTaP-IPV和Hib疫苗。研究表明五联疫苗相比于分别接种,免疫原性无显著差异23

来自中国的研究者进行了一项针对百日咳、白喉、破伤风、脊髓灰质炎和b型流感嗜血杆菌疫苗(DTaP-IPV-Hib)的随机、开放标签的临床试验,共有962名儿童参加试验,并于2017年发表实验结果。984名健康婴儿纳入总接种队列(TVC),962名完成了研究。455名婴儿(1:1:1)按照协议(ATP)进行的免疫原性研究:A组在2-3-4月龄接种五联疫苗,B组在3-4-5月龄时接种五联疫苗,151名婴儿同时接种DTaP/Hib和IPV疫苗(对照组)。825名婴儿在18-24月龄时接种DTaP/Hib或IPV的加强针。结果显示,A组在三剂基础免疫的效果优于对照组。除了抗聚核糖核糖醇磷酸酯和抗脊髓灰质炎病毒 1-3 型的抗体浓度在 DTPa-IPV/Hib 接种者中较高外,其他各组的抗体浓度相似。 针对所有疫苗抗原的保护性抗体水平在加强免疫前一直很高24。 

另有一项使用中国国家免疫接种后不良事件监测系统(CNAEFIS)进行回顾性研究的研究显示,2011至2017年间,广州共有接种了51.6万剂次DTaP-IPV-Hib疫苗,共有376例不良反应被报告,大多数报告的 DTaP-IPV/Hib 疫苗接种后 AEFI 并不严重。 仅有8例为严重不良反应25

1998年至1999年间,在意大利进行的一项多中心试验入组了360名儿童,受试者被随机分为两组,一组接种DTaP-Hib-HepB五联疫苗,另一组接种DTaP-HepB四联疫苗与Hib单价疫苗的组合,研究者在两组受试者的血清中都检测到了相似的抗体浓度。在接受DTaP-Hib-HepB五联疫苗和DTaP-HepB四联疫苗与Hib单价疫苗组合的组别中,分别有97.0%和99.4%的受试者产生浓度[大于或等于]1.0μg/mL的Hib抗PRP抗体。试验证明,在四联DTaP-HepB疫苗中加入Hib抗原成分并不会提高局部或全身反应的发生率26

与四联、五联疫苗类似,多数现有证据支持儿童用六联疫苗与分开接种低联及单价疫苗组合具有相似的免疫原性和安全性27,28,29,30,31

一项在斯洛伐克进行的六联苗的研究显示,接种 DTaP-HBV-IPV/Hib 疫苗10-11年后,48.4% 的人抗-HBs 维持在≥10 mIU/ml,单独接种五联疫苗(DTaP-IPV/Hib)和单价乙肝疫苗(HBV)的受试者,58.4%的人抗-HBs维持在≥10 mIU/ml。DTaP-HBV-IPV/Hib 诱导的免疫记忆与单价 HBV 诱导的受试者相似,DTPa-HBV-IPV/Hib 和单价 HBV 的保护持续时间可能相似28

西班牙的一项开放标签、随机、多中心试验结果揭示,儿童接种DTaP-IPV-Hib-HepB六联疫苗后的发热概率高于分别接种DTaP-IPV/Hib五联疫苗及HBV单价疫苗组合(21% vs.12%),接种六联疫苗引发的局部疼痛概率略高于分开接种组(2.5% vs. 1.2%) 。值得关注的是,接种六联疫苗组对百日咳抗原产生的免疫应答率超过97%,这一数据高出分开接种组90%的免疫应答率32

另一项在美国进行的开放标签、随机、多中心研究评估了接种DTaP-HBV-IPV-Hib六联疫苗与同时注射DTaP-HBV-IPV五联疫苗和Hib单价疫苗组合或者DTaP-IPV-Hib五联和HepB单价疫苗组合的免疫原性和安全性,这项研究共入组585名受试者。研究证明,接种DTaP-HBV-IPV-Hib六联疫苗、接种DTaP-HBV-IPV五联疫苗和Hib单价疫苗组合或者DTaP-IPV-Hib五联和HepB单价疫苗组合三种方式对所有疫苗抗原成分的血清保护/阳性率都很高,分别为94.8%、98.1%、97.8%,研究者在三组受试者中均观察到接种疫苗后产生的强大免疫反应以及相似的反应原性33


审核校对:陈姝,潘张旸,邓添艺

网页编辑:刘子祺


参考文献

1 李艳萍等. 中国婴幼儿接种吸附无细胞百白破灭活脊髓灰质炎和b 型流感嗜血杆菌(结合)联合疫苗的安全性和免疫原性研究. 中华流行病学杂志. 2011,32(8):808-815

2 Lee, S. Y., Hwang, H. S., Kim, J. H., Kim, H. H., Lee, H. S., Chung, E. H., Park, S. E., Ma, S. H., Chang, J. K., Guitton, F., Ortiz, E., & Kang, J. H. (2011). Immunogenicity and safety of a combined diphtheria, tetanus, acellular pertussis, and inactivated poliovirus vaccine (DTaP-IPV) compared to separate administration of standalone DTaP and IPV vaccines: a randomized, controlled study in infants in the Republic of Korea. Vaccine, 29(8), 1551–1557. https://doi.org/10.1016/j.vaccine.2010.12.094

3 Li, G., Zhang, H., Zhou, W., Ye, Q., Li, F., Wang, H., Hou, Q., Xu, Y., Ma, X., Tan, Y., Wang, L., Li, Y., Li, H., Meng, F., Liang, Q., Liu, A., Qin, C., Wei, W., Liu, J., Ruan, C., … Zhu, F. (2010). Safety and immunogenicity of a diphtheria, tetanus, acellular pertussis and Haemophilus influenzae Type b combination vaccine compared with separate administration of licensed equivalent vaccines in Chinese infants and toddlers for primary and booster immunization. Vaccine, 28(25), 4215–4223. https://doi.org/10.1016/j.vaccine.2010.03.061

4 Nilsson, L., Faldella, G., Jacquet, J. M., Storsaeter, J., Silfverdal, S. A., & Ekholm, L. (2005). A fourth dose of DTPa-IPV vaccine given to 4–6-year-old children in Italy and Sweden following primary vaccination at 3, 5 and 11-12 months of age. Scandinavian journal of infectious diseases, 37(3), 221–229. https://doi.org/10.1080/00365540410020884

5 Black, S., Friedland, L. R., Ensor, K., Weston, W. M., Howe, B., & Klein, N. P. (2008). Diphtheria-tetanus-acellular pertussis and inactivated poliovirus vaccines given separately or combined for booster dosing at 4-6 years of age. The Pediatric infectious disease journal, 27(4), 341–346. https://doi.org/10.1097/INF.0b013e3181616180

6 Arístegui, J., García-Corbeira, P., de la Flor, J. et al. Reactogenicity and Safety of DTPa Vaccine and Haemophilus influenzae Type b Conjugate Vaccine (Hib) in a Single Injection vs DTPw and Hib as Separate Injections as a Booster Vaccination in 18-Month-Old Children. Clin. Drug Investig. 21, 9–16 (2001). https://doi.org/10.2165/00044011-200121010-00002

7 Knuf, M., Zepp, F., Helm, K., Maurer, H., Prieler, A., Kieninger-Baum, D., Douha, M., & Willems, P. (2012). Antibody persistence for 3 years following two doses of tetravalent measles-mumps-rubella-varicella vaccine in healthy children. European journal of pediatrics, 171(3), 463–470. https://doi.org/10.1007/s00431-011-1569-4

8 Gillet, Y., Steri, G. C., Behre, U., Arsène, J. P., Lanse, X., Helm, K., Esposito, S., Meister, N., Desole, M. G., Douha, M., & Willems, P. (2009). Immunogenicity and safety of measles-mumps-rubella-varicella (MMRV) vaccine followed by one dose of varicella vaccine in children aged 15 months-2 years or 2-6 years primed with measles-mumps-rubella (MMR) vaccine. Vaccine, 27(3), 446–453. https://doi.org/10.1016/j.vaccine.2008.10.064

9  Lalwani, S., Chatterjee, S., Balasubramanian, S., Bavdekar, A., Mehta, S., Datta, S., Povey, M., & Henry, O. (2015). Immunogenicity and safety of early vaccination with two doses of a combined measles-mumps-rubella-varicella vaccine in healthy Indian children from 9 months of age: a phase III, randomised, non-inferiority trial. BMJ open, 5(9), e007202. https://doi.org/10.1136/bmjopen-2014-007202

10 Cha, S. H., Shin, S. H., Lee, T. J., Kim, C. H., Povey, M., Kim, H. M., & Nicholson, O. (2014). Immunogenicity and safety of a tetravalent measles-mumps-rubella-varicella vaccine: an open-labeled, randomized trial in healthy Korean children. Clinical and experimental vaccine research, 3(1), 91–99. https://doi.org/10.7774/cevr.2014.3.1.91

11 Henry, O., Brzostek, J., Czajka, H., Leviniene, G., Reshetko, O., Gasparini, R., Pazdiora, P., Plesca, D., Desole, M. G., Kevalas, R., Gabutti, G., Povey, M., & Innis, B. (2018). One or two doses of live varicella virus-containing vaccines: Efficacy, persistence of immune responses, and safety six years after administration in healthy children during their second year of life. Vaccine, 36(3), 381–387. https://doi.org/10.1016/j.vaccine.2017.11.081

12 Cocchio, S., Zanoni, G., Opri, R., Russo, F., Baldo, V., & Collaborative group (2016). A postmarket safety comparison of 2 vaccination strategies for measles, mumps, rubella and varicella in Italy. Human vaccines & immunotherapeutics, 12(3), 651–654. https://doi.org/10.1080/21645515.2015.1101198

13 Schink, T., Holstiege, J., Kowalzik, F., Zepp, F., & Garbe, E. (2014). Risk of febrile convulsions after MMRV vaccination in comparison to MMR or MMR+V vaccination. Vaccine, 32(6), 645–650. https://doi.org/10.1016/j.vaccine.2013.12.011

14 Goh, P., Lim, F. S., Han, H. H., & Willems, P. (2007). Safety and immunogenicity of early vaccination with two doses of tetravalent measles-mumps-rubella-varicella (MMRV) vaccine in healthy children from 9 months of age. Infection, 35(5), 326–333. https://doi.org/10.1007/s15010-007-6337-z

15 Lieberman, J. M., Williams, W. R., Miller, J. M., Black, S., Shinefield, H., Henderson, F., Marchant, C. D., Werzberger, A., Halperin, S., Hartzel, J., Klopfer, S., Schödel, F., Kuter, B. J., & Consistency Lot Study Group for ProQuad (2006). The safety and immunogenicity of a quadrivalent measles, mumps, rubella and varicella vaccine in healthy children: a study of manufacturing consistency and persistence of antibody. The Pediatric infectious disease journal, 25(7), 615–622. https://doi.org/10.1097/01.inf.0000220209.35074.0b

16 Knuf, M., Habermehl, P., Zepp, F., Mannhardt, W., Kuttnig, M., Muttonen, P., Prieler, A., Maurer, H., Bisanz, H., Tornieporth, N., Descamps, D., & Willems, P. (2006). Immunogenicity and safety of two doses of tetravalent measles-mumps-rubella-varicella vaccine in healthy children. The Pediatric infectious disease journal, 25(1), 12–18. https://doi.org/10.1097/01.inf.0000195626.35239.58

17 Prymula, R., Bergsaker, M. R., Esposito, S., Gothefors, L., Man, S., Snegova, N., Štefkovičova, M., Usonis, V., Wysocki, J., Douha, M., Vassilev, V., Nicholson, O., Innis, B. L., & Willems, P. (2014). Protection against varicella with two doses of combined measles-mumps-rubella-varicella vaccine versus one dose of monovalent varicella vaccine: a multicentre, observer-blind, randomised, controlled trial. Lancet (London, England), 383(9925), 1313–1324. https://doi.org/10.1016/S0140-6736(12)61461-5

18 Kang, J. H., Lee, H. J., Kim, K. H., Oh, S. H., Cha, S. H., Lee, J., Kim, N. H., Eun, B. W., Kim, C. H., Hong, Y. J., Kim, H. H., Lee, K. Y., Kim, Y. J., Cho, E. Y., Kim, H. S., Guitton, F., & Ortiz, E. (2016). The Immunogenicity and Safety of a Combined DTaP-IPV//Hib Vaccine Compared with Individual DTaP-IPV and Hib (PRP~T) Vaccines: a Randomized Clinical Trial in South Korean Infants. Journal of Korean medical science, 31(9), 1383–1391. https://doi.org/10.3346/jkms.2016.31.9.1383

19 Kitchin, N., Southern, J., Morris, R., Hemme, F., Cartwright, K., Watson, M., & Miller, E. (2006). A randomised controlled study of the reactogenicity of an acellular pertussis-containing pentavalent infant vaccine compared to a quadrivalent whole cell pertussis-containing vaccine and oral poliomyelitis vaccine, when given concurrently with meningococcal group C conjugate vaccine to healthy UK infants at 2, 3 and 4 months of age. Vaccine, 24(18), 3964–3970. https://doi.org/10.1016/j.vaccine.2006.02.018

20 Halperin, S. A., King, J., Law, B., Mills, E., & Willems, P. (1999). Safety and immunogenicity of Haemophilus influenzae-tetanus toxoid conjugate vaccine given separately or in combination with a three-component acellular pertussis vaccine combined with diphtheria and tetanus toxoids and inactivated poliovirus vaccine for the first four doses. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 28(5), 995–1001. https://doi.org/10.1086/514741

21 Guerra, F. A., Blatter, M. M., Greenberg, D. P., Pichichero, M., Noriega, F. R., & Pentacel Study Group (2009). Safety and immunogenicity of a pentavalent vaccine compared with separate administration of licensed equivalent vaccines in US infants and toddlers and persistence of antibodies before a preschool booster dose: a randomized, clinical trial. Pediatrics, 123(1), 301–312. https://doi.org/10.1542/peds.2007-3317

22 Merchant, N., & Waldrop, J. (2012). The safety advantages of pentavalent vaccines. The Nurse practitioner, 37(4), 48–53. https://doi.org/10.1097/01.NPR.0000412895.12310.9d

23 Kim, K. H., Kim, C. S., Kim, H. M., Kim, J. D., Ma, S. H., Kim, D. H., Hwang, P. H., Han, J. W., Lee, T. J., Kim, J. H., Karkada, N., Mesaros, N., Sohn, W. Y., & Kim, J. H. (2019). Immunogenicity and safety of a combined DTPa-IPV/Hib vaccine administered as a three-dose primary vaccination course in healthy Korean infants: phase III, randomized study. Human vaccines & immunotherapeutics, 15(2), 317–326. https://doi.org/10.1080/21645515.2018.1536588

24 Li, Y., Li, R. C., Ye, Q., Li, C., Liu, Y. P., Ma, X., Li, Y., Zhao, H., Chen, X., Assudani, D., Karkada, N., Han, H. H., Van Der Meeren, O., & Mesaros, N. (2017). Safety, immunogenicity and persistence of immune response to the combined diphtheria, tetanus, acellular pertussis, poliovirus and Haemophilus influenzae type b conjugate vaccine (DTPa-IPV/Hib) administered in Chinese infants. Human vaccines & immunotherapeutics, 13(3), 588–598. https://doi.org/10.1080/21645515.2016.1239670

25 Li, Z., Xu, J., Tan, H., Zhang, C., Chen, J., Ni, L., Yun, X., Huang, Y., & Wang, W. (2020). Safety of pentavalent DTaP-IPV/Hib combination vaccine in post-marketing surveillance in Guangzhou, China, from 2011 to 2017. International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases, 99, 149–155. https://doi.org/10.1016/j.ijid.2020.07.019

26 Gabutti, G., Bona, G., Dentico, P., Bamfi, F., Hardt, K., Majori, S., Crovari, P., & Cooperative Group for the Study of Combined Vaccines* (2005). Immunogenicity and Reactogenicity following Primary Immunisation with a Combined DTaP-HBV Vaccine and a Haemophilus influenzae Type B Vaccine Administered by Separate or Mixed Injection. Clinical drug investigation, 25(5), 315–323. https://doi.org/10.2165/00044011-200525050-00004

27 Zepp, F., Knuf, M., Heininger, U., Jahn, K., Collard, A., Habermehl, P., Schuerman, L., & Sänger, R. (2004). Safety, reactogenicity and immunogenicity of a combined hexavalent tetanus, diphtheria, acellular pertussis, hepatitis B, inactivated poliovirus vaccine and Haemophilus influenzae type b conjugate vaccine, for primary immunization of infants. Vaccine, 22(17-18), 2226–2233. https://doi.org/10.1016/j.vaccine.2003.11.044

28 Avdicova, M., Crasta, P. D., Hardt, K., & Kovac, M. (2015). Lasting immune memory against hepatitis B following challenge 10-11 years after primary vaccination with either three doses of hexavalent DTPa-HBV-IPV/Hib or monovalent hepatitis B vaccine at 3, 5 and 11-12 months of age. Vaccine, 33(23), 2727–2733. https://doi.org/10.1016/j.vaccine.2014.06.070

29 Lim, F. S., Han, H. H., Jacquet, J. M., & Bock, H. L. (2007). Primary vaccination of infants against hepatitis B can be completed using a combined hexavalent diphtheria-tetanus-acellular pertussis-hepatitis B-inactivated poliomyelitis-Haemophilus influenzae type B vaccine. Annals of the Academy of Medicine, Singapore, 36(10), 801–806.

30 Cheng, H. K., Rajadurai, V. S., Amin, Z., Sriram, B., Yee, M. F., Han, H. H., Bock, H. L., & Safary, A. (2004). Immunogenicity and reactogenicity of two regimens of diphtheria-tetanus-acellular pertussis-hepatitis B-inactivated polio and Haemophilus influenzae type b vaccines administered to infants primed at birth with hepatitis B vaccine. The Southeast Asian journal of tropical medicine and public health, 35(3), 685–692.

31 Avdicová, M., Prikazský, V., Hudecková, H., Schuerman, L., & Willems, P. (2002). Immunogenicity and reactogenicity of a novel hexavalent DTPa-HBV-IPV/Hib vaccine compared to separate concomitant injections of DTPa-IPV/Hib and HBV vaccines, when administered according to a 3-, 5- and 11-month vaccination schedule. European journal of pediatrics, 161(11), 581–587. https://doi.org/10.1007/s00431-002-1079-5

32 Arístegui, J., Dal-Ré, R., Díez-Delgado, J., Marés, J., Casanovas, J. M., García-Corbeira, P., De Frutos, E., Van Esso, D., Verdaguer, J., De la Flor, J., Moraga, F., Boceta, R., & García-Martínez, J. A. (2003). Comparison of the reactogenicity and immunogenicity of a combined diphtheria, tetanus, acellular pertussis, hepatitis B, inactivated polio (DTPa-HBV-IPV) vaccine, mixed with the Haemophilus influenzae type b (Hib) conjugate vaccine and administered as a single injection, with the DTPa-IPV/Hib and hepatitis B vaccines administered in two simultaneous injections to infants at 2, 4 and 6 months of age. Vaccine, 21(25-26), 3593–3600. https://doi.org/10.1016/s0264-410x(03)00420-1

33 Klein, N. P., Abu-Elyazeed, R., Cheuvart, B., Janssens, W., & Mesaros, N. (2019). Immunogenicity and safety following primary and booster vaccination with a hexavalent  diphtheria, tetanus, acellular pertussis, hepatitis B, inactivated poliovirus and Haemophilus influenzae type b vaccine: a randomized trial in the United States. Human vaccines & immunotherapeutics, 15(4), 809–821. https://doi.org/10.1080/21645515.2018.1549449

代表性地区的基本情况、接种政策及效果、宣传推动情况

(1) 成都市

 

基本情况

成都市2022年度GDP为20817.5亿元,排名全国城市第七。成都市出台了《健康城市建设推动健康中国行动创新模式成都市宫颈癌综合防控试点工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为13-14岁在校且无HPV疫苗接种史女生。免疫程序为国产二价0-6二剂次、进口二价0-1-6三剂次、进口四价0-2-6三剂次。资助政策为国产二价疫苗(沃泽惠)免费,其它疫苗补贴600元/人,并自付20元/剂接种费。疫苗接种按照属地化管理原则,由学校所在地预防接种单位负责。截至2022年1月,目标人群首针接种率达90.04%[14]。

宣传推动

成都市开展多形式、多载体的健康教育宣传。形式包括讲座、知晓日、义诊咨询、专题课程、专题活动等,载体包括宣传册、宣传栏、展板、电视、微信、视频号、抖音平台等,覆盖相关医疗机构300余、社区300余个、和公众场所90余个。面向适龄女孩及监护人、适龄女性及全体市民开展广泛宣教,宣传材料发放至近9万名群众,讲座活动覆盖近2万名群众。宣教内容包括HPV疫苗接种、两癌防控、其它女性常见疾病防控等。

(2) 济南市

 

基本情况

济南市2022年度GDP为12027.5亿元,位列全国城市排名20。2021年,济南市出台《健康城市建设推动健康中国行动创新模式试点一济南市宫颈癌综合防治工作方案(2021—2025年)》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为≤14周岁且无HPV疫苗接种史的在校七年级女生。免疫程序为国产二价0-6二剂次。资助政策免费接种。疫苗接种按照属地化管理原则,安排分班级分时段前往学校所在地的预防接种单位进行接种。截至2022年11月,目标人群首针接种率达
94.4%[15].

宣传推动

济南市开展多形式、多载体的健康教育宣传。形式包括采访、线上线下专题活动,载体包括网络媒体、纸媒、科普展板、宣传手册、子宫颈癌与HPV疫苗知识读本、济南HPV疫苗接种手册,宣教人群广泛涵盖全体市民,宣教内容包括HPV疫苗接种、两癌防控等知识。

(3) 鄂尔多斯市

 

基本情况

鄂尔多斯市2022年度GDP为5613.44亿元,全国地级市第45位。2021年,鄂尔多斯市出台了《健康城市建设推动健康鄂尔多斯行动创新模式工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

2020年8月,鄂尔多斯市在准格尔旗率先开展HPV疫苗免费接种项目。目标人群为全市当年13-18岁在校且无HPV疫苗接种史女生。免疫程序为进口二价0-1-6三剂次,

2023年起调整为13-14岁女孩0-6二剂次。资助政策为疫苗免费,自付20元/剂接种费。组织方式为疫苗接种服务中心根据任务安排联系学校,有规划的通知适龄女孩前来完成HPV疫苗接种。截至2022年11月,目标人群首针接种率接近70%[16]。

2022年8月,启动准格尔旗和达拉特旗高三女生接种四价和九价HPV疫苗的试点工作,利用暑假时间展开接种,力争在2023年年底达成90%的接种目标[17]。自鄂尔多斯之后,由政府主导的HPV疫苗惠民行动在多地等涌现。值得注意的是,近年来多主体参与到HPV疫苗支持项目,如慈善总会、医院、妇联等为主体单位牵头组织开展了一些公益活动。

宣传推动

鄂尔多斯市开展多形式、多载体的健康教育宣传。形式包括讲座、知晓日、义诊咨询、专题课程、专题活动等,载体包括宣传册、宣传栏、展板、电视、微信、视频号、抖音平台等,宣教人群广泛涵盖在校女孩及监护人,适龄女性及全体市民。宣教内容包括HPV疫苗接种、两癌防控、其它女性常见疾病防控等。

(4) 西安市

 

基本情况

西安市2022年度GDP为11486.51亿元,排名全国第22位。2021年,西安市出台了《西安市健康城市建设推动健康中国行动创新模式试点宫颈癌综合防治工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为全市年龄满13周岁(初中)在校女生。免疫程序为国产二价0-6二剂次,进口二价0-1-6三剂次,进口四价和进口九价0-2-6三剂次。接种政策为自愿自费。各区(县)合理设立HPV疫苗专项疫苗接种门诊承担接种任务,并及时将接种信息统一录入儿童免疫规划信息平台。

宣传推动

西安市出台了《西安市宫颈癌综合防治宣传方案》(市健办发〔2022〕12号)。通过媒体宣传、社区活动、义诊等形式,宣传册、宣传栏、展板、电视、微信公众号、报纸等载体普及宫颈癌防治相关知识。

(5) 西藏自治区

 

基本情况

西藏自治区2022年度GDP为2132.64亿元,经济总量整体规模相对其他省份较小,人均GDP处于全国中等偏下水平。2022年出台《西藏自治区妇女“两癌”综合防治工作实施方案》等系列政策推动适龄女孩HPV疫苗接种。

接种政策及效果

目标人群为13-14岁在校女生。免疫程序为国产二价0-6二剂次。资助政策为免费。由学校组织,接种者在商定接种时间携带个人身份证明材料与法定监护人一同前往定点接种单位接种。

宣传推动

充分利用网络、电视、广播、报刊等媒介,以群众喜闻乐见的宣传方式,对适龄在校女生HPV疫苗接种工作的意义及内容进行广泛宣传。

近年来各地HPV疫苗惠民项目信息

“疾病负担”指标解读

疾病负担(burden of disease, BOD)是指疾病造成的失能(伤残)、生活质量下降和过早死亡对健康和社会造成的总损失,包括疾病的流行病学负担和经济负担两个方面。

 

在疾病的流行病学方面,衡量疾病负担的常用指标包括传统指标和综合指标。

 

传统指标

传统疾病负担的衡量指标包括:用于描述和反映健康状况与水平的常规指标,如死亡人数、伤残人数和患病人数等绝对数指标;以及用来比较不同特征人群疾病分布差异的指标,如发病率、伤残率、患病率、死亡率、门诊和住院率等相对数指标。

 

上述传统疾病负担的衡量指标基本上只考虑了人口的生存数量,而忽略了生存质量,不够全面;但优势在于资料相对计算方便,结果直观,可用于各种疾病的一般性描述。

 

综合指标

疾病负担不等同于死亡人数,综合指标弥补了传统指标的单一性,且可以让各种不同疾病造成的负担之间相互比较。

 

潜在寿命损失年(YPLL):通过疾病造成的寿命损失来估计疾病负担的大小。但忽略了疾病造成的失能对生存质量的影响。

 

伤残调整寿命年(DALYs):将死亡和失能相结合,用一个指标来描述疾病的这两方面的负担。它包括因早死造成健康生命年的损失(YLL)和因伤残造成健康生命年的损失(YLD),即DALY=YLL+YLD。目前,DALY是国内外一致公认的最具代表性、运用最多的疾病负担评价指标。

 

健康期望寿命(HALE):指具有良好健康状态的生命年以及个体在比较舒适的状态下生活的平均预期时间,综合考虑生命的质量和数量两方面。

 

 

随着疾病负担研究的深入,其测量范围从流行病学负担扩大到经济负担。

 

疾病经济负担是由于发病、伤残(失能)和过早死亡给患者本人、家庭以及社会带来的经济损失,和由于预防治疗疾病所消耗的经济资源。

详细见:疾病的“经济负担”怎么计算?

 

参考资料:

陈文. 卫生经济学 [M]. 人民卫生出版社. 2017.

李茜瑶,周莹,黄辉等.疾病负担研究进展[J].中国公共卫生,2018,34(05):777-780.

什么是“年龄标化”?

在流行病学研究中,年龄是多种疾病的危险因素。以发病率为例,该指标反映了一定时期内,特定人群中癌症新发病例的情况。由于年龄是癌症发生的一个重要影响因素,年龄越大,发病率就越高。

 

如果两个国家的人群年龄结构相差很大,例如A市老年人口比例更大,B市年轻人口占比更高,直接比较两地癌症发病率的高低,我们不能确定发病率较高的市,是因为年龄构成不同还是因为其他影响因素(如饮食习惯、环境等)所导致。因此,需要用“年龄标化”的统计学方法,进一步处理数据,排除年龄影响因素的干扰,再来比较两地的发病率数据。

 

以发病率为例,即把原始数据套到一个“标准年龄结构人群里”,计算出”年龄标化发病率“,这样人群结构不同的A市和B市,就能在同一个指标尺度下进行“发病率”比较。年龄标化通常有“中标率”,即我国各地基于某一年份的中国人口年龄结构构成作为标准计算,国内不同地区的疾病数据比较采用的是“中标率”;另一种是“世标率”,即用世界标准人口构成机型标化计算,适用于国与国之间的指标比较。

 

同样地,以死亡率为例,应特别注意各之间地人口构成的差异。用标准化死亡率进行比较才能得出正确结论。如甲、乙两地在未标化前的肺癌死亡率相同,但实际上乙地人群的肺癌死亡率要明显地高于甲地,其原因在于甲地男性老年人口居多,而肺癌的死亡率又与年龄和性别有关,所以用未标化率进行比较时,就会得出甲乙两地肺癌死亡率相同的错误结论。

 

参考资料:

 

张科宏教授:年龄标化的患病率 – 丁香公开课 (dxy.cn)

科学网—癌症(粗)发病率与标化发病率的区别 – 杨雷的博文 (sciencenet.cn)

WHO年龄标化死亡率定义及计算方法

沈洪兵,齐秀英. 流行病学 [M]. 人民卫生出版社. 2015.

疾病的“经济负担”怎么计算?

疾病经济负担是由于发病、伤残(失能)和过早死亡给患者本人、家庭以及社会带来的经济损失,和由于预防治疗疾病的费用。通过计算疾病的经济负担,可以从经济层面上研究或比较不同疾病对人群健康的影响。

总疾病经济负担包括直接疾病经济负担、间接疾病经济负担和无形疾病经济负担。

直接经济负担:指直接用于预防和治疗疾病的总费用,包括直接医疗经济负担和直接非医疗经济负担两部分。直接医疗经济负担是指在医药保健部门购买卫生服务的花费,主要包括门诊费(如挂号费、检查费、处置费、诊断费、急救费等)、住院费(如手术费、治疗费等)和药费等。直接非医疗经济负担包括和疾病有关的营养费、交通费、住宿费、膳食费、陪护费和财产损失等。

间接经济负担:指由于发病、伤残(失能)和过早死亡给患者本人和社会带来的有效劳动力损失而导致的经济损失。具体包括:劳动工作时间损失、个人工作能力和效率降低造成的损失、陪护病人时损失的劳动工作时间、精神损失等。

无形经济负担:指患者及亲友因疾病在心理、精神和生活上遭受的痛苦、悲哀、不便等生活质量下降而产生的无形损失。

 

参考资料:

陈文. 卫生经济学 [M]. 人民卫生出版社. 2017.

李茜瑶,周莹,黄辉等.疾病负担研究进展[J].中国公共卫生,2018,34(05):777-780.