Search
Close this search box.

Immunogenicity and Safety of Quadrivalent, Pentavalent, and Hexavalent Vaccines

Immunogenicity and Safety of Quadrivalent, Pentavalent, and Hexavalent Vaccines

Quadrivalent vaccines developed based on the DTaP combination vaccine (DTaP-X)

Previous studies found that quadrivalent vaccines developed based on the DTaP vaccine are not inferior to the monovalent vaccine in terms of immunogenicity and safety1,2.

In 2007, researchers conducted a randomized, two-stage, parallel-controlled, single-center clinical trial in Dafeng District, Yancheng City, Jiangsu Province, to evaluate China’s first self-developed DTaP-Hib quadrivalent vaccine. A total of 720 infants and children were enrolled in the trial and randomly assigned to the two groups in a 2:1 ratio. In the first phase, 480 subjects in the intervention group received three doses of DTaP-Hib quadrivalent vaccine at 3, 4, and 5 months of age, while 240 subjects in the control group received DTaP vaccine and Hib monovalent vaccine at 3, 4, and 5 months respectively. In the second phase, 633 vaccinated toddlers (31 in the intervention group and 202 in the control group) received booster doses at 18 months. The research team collected sera samples at pre-dose 1, 4 weeks post-dose 3, pre-dose 4-, and 4-weeks post-dose 4, respectively. Results showed that seroconversion rates of anti-pertussis toxoid (PT), anti-filamentous hemagglutinin (FHA), anti-diphtheria toxoid (DT), anti-tetanus toxoid (TT), and anti-polyribosyl-ribitol-phosphate (PRP) in the intervention group were comparable to that of the control group. Nearly 100% of the subjects in both groups achieved seroprotective levels after primary and booster vaccination, with low frequency of AEFI in both groups3.

Randomized trials conducted in Sweden, Italy, and the United States using the DTaP-IPV quadrivalent vaccine revealed similar results. The DTaP-IPV quadrivalent vaccine group showed comparable results to the control group, which received the DTaP vaccine and the IPV monovalent vaccine, respectively, in terms of the seroprotection and the average level of antibodies produced against each antigen. The investigators also observed that reactogenicity between the two groups was nearly identical4,5.

Researchers from Spain conducted another trial between 1998 and 1999, in which 223 children were randomized to two groups—Group 1 was given the DTaP-Hib quadrivalent vaccine, and Group 2 was given the DTwP combination vaccine and Hib monovalent vaccine separately. The trial results showed that the DTaP-Hib vaccination group was significantly less reactogenic than Group 2, which had more localized reactions and fever reported. The evidence suggested that the quadrivalent vaccine was safer and had better reactogenicity for children 6.

Quadrivalent vaccines (MMRV) are developed based on the MMR combination vaccine.

Previous studies indicated that the immunogenicity and safety of the MMRV quadrivalent vaccine were better 7 or comparable 8,9 to receiving the MMR vaccine and monovalent varicella vaccine. A South Korean study found that only the primary objective of non-inferiority in mumps SCRs was not met10. The above studies indicated comparable AEFI in the intervention and control groups.

A trial conducted in 10 European Union countries between 2009 and 2015, enrolling more than 5,000 children, found that antibodies produced by both the MMRV vaccination group and the MMR vaccine and monovalent varicella vaccine separately given group effectively protected against varicella infection. Efficacy of two doses of MMRV against all and moderate or severe varicella was 95.0% (95% CI: 93.6–96.2) and 99.0% (95% CI: 97.7–99.6), respectively. The efficacy of one dose of varicella vaccine against all and against moderate or severe varicella was 67.0% (95% CI: 61.8–71.4) and 90.3% (95% CI: 86.9–92.8), respectively. In addition, 570 adverse events were reported in 422 children during the trial period. However, after investigation, these adverse events were confirmed unrelated to vaccination 11.

Some studies have also shown that the MMRV vaccine increases the probability of febrile convulsions 12,13 or fever during the initial vaccination period 14,15,16. A multicenter, single-blind, randomized controlled trial found that after the first dose of vaccination, 57.4% of subjects in the MMRV vaccination group developed a fever of 38°C or higher, compared with 44.5% in the MMR and varicella monovalent vaccine receiving group, and 39.8% in the MMR vaccination group17.

There are two types of pentavalent vaccines, one for pertussis, diphtheria, tetanus, polio, and Haemophilus influenzae type b (DTaP-IPV-Hib) and the other for pertussis, diphtheria, tetanus, polio and hepatitis B (DTaP-HepB-IPV). Previous evidence showed that receiving the two types of pentavalent vaccines has comparable antibody responses to receiving lower-valent combination vaccines and monovalent vaccines containing the same antigens 18,19,20,21. A meta-analysis that included nine clinical trial studies of pentavalent vaccines showed that monovalent vaccines produced higher levels of diphtheria and pertussis antibodies when compared with the combination vaccine receiving group. The immunogenicity levels of pertussis, Haemophilus influenzae b, polio, and hepatitis B in most of the studies were comparable between combination vaccine receivers and the monovalent vaccine receiving group 22. Studies have also reflected fewer injection site reactions in the pentavalent vaccine receiving group18,19,21. Still, studies have shown an increase in local reactions after being vaccinated with the pentavalent vaccine or a higher rate of redness after receiving the first dose of the pentavalent vaccine22.

Researchers in South Korea conducted an open-label, multicenter study in which healthy infants aged 42-69 days (1:1 randomization) received three doses of pentavalent vaccine (DTaP-IPV/Hib) at 2, 4, and 6 months or DTaP-IPV and Hib vaccines separately. The study showed no significant difference in immunogenicity of the pentavalent vaccine compared to separate vaccinations 23.

A research team from China designed a randomized, open-label clinical trial of pertussis, diphtheria, tetanus, polio, and Haemophilus influenzae type b vaccine (DTaP-IPV-Hib) with a total of 962 children enrolled. The study results were published in 2017. 984 infants were included in the TVC, and 962 completed the study. The according-to-protocol (ATP) cohort for immunogenicity included 455 infants: 147 received the DTaP-IPV/Hib vaccine at 2, 3, 4 months of age (Group A), 157 received the vaccine at 3, 4, 5 months of age (Group B), and 151 received the concomitant DTaP/Hib at 2, 3, 4 months of age (Control group).  825 infants received a booster dose of DTaP/Hib and IPV at 18–24 months. Non-inferiority of 3-dose primary vaccination with DTaP-IPV/Hib over separately administered DTaP/Hib and IPV was demonstrated for Group A. Similar antibody concentrations were observed in all groups, except for anti-polyribosyl-ribitol phosphate and anti-poliovirus types 1–3, which were higher in DTaP-IPV/Hib recipients. Protective antibody levels against all vaccine antigens remained high until booster vaccination24.

Another retrospective study using data from the China National Adverse Events after Immunization Surveillance System (CNAEFIS) showed that 516,000 doses of DTaP-IPV-Hib vaccine were administered to children in Guangzhou between 2011 and 2017. 376 cases of adverse reactions were reported. Most reported AEFIs after DTaP-IPV/Hib vaccination are not serious, with only eight serious cases25.

A multicenter trial conducted in Italy between 1998 and 1999 enrolled 360 children randomized into two groups, one receiving DTaP-Hib-HepB pentavalent vaccine and the other receiving DTaP-HepB quadrivalent vaccine and Hib monovalent vaccine separately. The investigators detected comparable seroprotective antibody concentrations against all vaccine-covered antigens. 97.0% and 99.4% of the subjects receiving single or separate injections had Hib anti-PRP antibody concentrations ≥1.0 μg/mL. The trial also demonstrated that the addition of a Hib vaccine to the DTaP-HBV vaccine did not increase the incidence of local or systemic reactions 26.

Like the quadrivalent and pentavalent vaccines, most evidence has confirmed that the hexavalent vaccine has similar immunogenicity and safety to the lower-valent combination vaccines and monovalent vaccines containing the same antigens27,28,29,30,31.

A study of hexavalent vaccine in Slovakia showed that 10-11 years after DTaP-HBV-IPV/Hib vaccination, 48.4% maintained anti-HBs at ≥10 mIU/ml, and 58.4% of subjects vaccinated with pentavalent vaccine (DTaP-IPV/Hib) and monovalent hepatitis B vaccine (HBV) separately maintained anti-HBs at ≥10mIU/ml. DTaP-HBV-IPV/Hib-induced immune memory was similar to monovalent HBV-primed subjects, and the duration of protection may be identical for DTaP-HBV-IPV/Hib and monovalent HBV 28.

The results of an open, randomized, multicenter trial published in 2003 revealed that the probability of fever after DTaP-IPV-Hib-HepB vaccination was higher than that after DTaP-IPV/Hib pentavalent and HBV monovalent vaccines received separately (21% vs. 12%). The probability of localized pain after receiving the hexavalent vaccine was slightly higher than that of the separate vaccination group (2.5% vs. 1.2%). The study also found that the immunological response to pertussis antigens in the hexavalent vaccine receivers was more than 97%, which is higher than the 90% immunological response in the separately vaccinated group32.

Another open-label, randomized, multicenter study conducted in the U.S. evaluated the immunogenicity and safety of vaccination with DTaP-HBV-IPV-Hib hexavalent vaccine versus concomitant administration of either the DTaP-HBV-IPV pentavalent vaccine and Hib monovalent vaccine or the DTaP-IPV-Hib pentavalent and HepB monovalent vaccine. The study enrolled 585 subjects. The study demonstrated that the seroprotection/positive rates for all vaccine antigenic components were high in all three vaccination modalities: DTaP-HBV-IPV/Hib (≥ 94.8%), DTaP-HBV-IPV+ HibA (≥ 98.1%) or DTaP-IPV/Hib+ HBV (≥ 97.8%) groups. The investigators observed strong immune responses and reactogenicity in all three groups33.


Content Editor: Siqi Jin, Zhangyang Pan

Page Editor: Ziqi Liu


Reference

1 Li Yanping et al. Safety and immunogenicity of adsorbed inactivated cell-free poliovirus and Haemophilus influenzae type b (conjugate) vaccine in infants and young children in China (in Chinese). Chinese Journal of Epidemiology. 2011,32(8):808-815

2 Lee, S. Y., Hwang, H. S., Kim, J. H., Kim, H. H., Lee, H. S., Chung, E. H., Park, S. E., Ma, S. H., Chang, J. K., Guitton, F., Ortiz, E., & Kang, J. H. (2011). Immunogenicity and safety of a combined diphtheria, tetanus, acellular pertussis, and inactivated poliovirus vaccine (DTaP-IPV) compared to separate administration of standalone DTaP and IPV vaccines: a randomized, controlled study in infants in the Republic of Korea. Vaccine, 29(8), 1551 Vaccine, 29(8), 1551 -1557. https://doi.org/10.1016/j.vaccine.2010.12.094

3 Li, G., Zhang, H., Zhou, W., Ye, Q., Li, F., Wang, H., Hou, Q., Xu, Y., Ma, X., Tan, Y., Wang, L., Li, Y., Li, H., Meng, F., Liang, Q., Liu, A., Qin, C., Wei, W., Liu, J., Ruan, C., … Zhu, F. (2010). Liu, J., Ruan, C., … Zhu, F. (2010). Safety and immunogenicity of a diphtheria, tetanus, acellular pertussis and Haemophilus influenzae Type b combination vaccine compared with separate administration of licensed equivalent vaccines in Chinese infants and toddlers for primary and booster immunization. Vaccine, 28(25), 4215 -4223. -4223. https://doi.org/10.1016/j.vaccine.2010.03.061

4 Nilsson, L., Faldella, G., Jacquet, J. M., Storsaeter, J., Silfverdal, S. A., & Ekholm, L. (2005). A fourth dose of DTPa-IPV vaccine given to 4-6-year-old children in Italy and Sweden following primary vaccination at 3, 5 and 11-12 months Scandinavian journal of infectious diseases, 37(3), 221-229. https://doi.org/10.1080/00365540410020884

5 Black, S., Friedland, L. R., Ensor, K., Weston, W. M., Howe, B., & Klein, N. P. (2008). Diphtheria-tetanus-acellular pertussis and inactivated poliovirus vaccines given separately or combined for booster dosing at 4-6 years of age. the Pediatric infectious disease journal, 27(4), 341-346. https://doi.org/10.1097/INF.0b013e3181616180

6  Arístegui, J., García-Corbeira, P., de la Flor, J. et al. Reactogenicity and Safety of DTPa Vaccine and Haemophilus influenzae Type b Conjugate Vaccine (Hib) in a Single Injection vs DTPw and Hib as Separate Injections as a Booster Vaccination in 18-Month-Old Children. Clin. Drug Investig. 21, 9-16 (2001). Drug Investig. 21, 9 -16 (2001). https://doi.org/10.2165/00044011-200121010-00002

7 Knuf, M., Zepp, F., Helm, K., Maurer, H., Prieler, A., Kieninger-Baum, D., Douha, M., & Willems, P. (2012). Antibody persistence for 3 years following two doses of tetravalent measles-mumps-rubella-varicella vaccine in healthy children. European journal of pediatrics, 171(3), 463-470. https://doi.org/10.1007/s00431-011-1569-4

8 Gillet, Y., Steri, G. C., Behre, U., Arsène, J. P., Lanse, X., Helm, K., Esposito, S., Meister, N., Desole, M. G., Douha, M., & Willems, P. (2009). Immunogenicity and safety of measles-mumps-rubella-varicella (MMRV) vaccine followed by one dose of varicella vaccine in children aged 15 months-2 years or 2-6 years primed with varicella. years or 2-6 years primed with measles-mumps-rubella (MMR) vaccine. Vaccine, 27(3), 446-453. https://doi.org/10.1016/j. vaccine.2008.10.064

9  Lalwani, S., Chatterjee, S., Balasubramanian, S., Bavdekar, A., Mehta, S., Datta, S., Povey, M., & Henry, O. (2015). Immunogenicity and safety of early vaccination with two doses of a combined measles-mumps-rubella-varicella vaccine in healthy Indian children from 9 months of age: a phase III, randomized, non-inferiority trial. bmj open, 5(9), e007202. https://doi.org/10.1136/bmjopen-2014-007202

10 Cha, S. H., Shin, S. H., Lee, T. J., Kim, C. H., Povey, M., Kim, H. M., & Nicholson, O. (2014). Immunogenicity and safety of a tetravalent measles-mumps-rubella-varicella vaccine: an open-labeled, randomized trial in healthy Korean children. Clinical and experimental vaccine research, 3(1), 91-99. https://doi.org/10.7774/cevr.2014.3.1.91

11 Henry, O., Brzostek, J., Czajka, H., Leviniene, G., Reshetko, O., Gasparini, R., Pazdiora, P., Plesca, D., Desole, M. G., Kevalas, R., Gabutti, G.,. Povey, M., & Innis, B. (2018). One or two doses of live varicella virus-containing vaccines: efficacy, persistence of immune responses, and safety six years after administration in healthy children during their second year of life. Vaccine, 36(3), 381-387. https://doi.org/10.1016/j.vaccine.2017.11.081

12 Cocchio, S., Zanoni, G., Opri, R., Russo, F., Baldo, V., & Collaborative group (2016). A postmarket safety comparison of 2 vaccination strategies for measles, mumps, rubella and varicella in Italy. human vaccines & immunotherapeutics, 12(3), 651-654. https://doi.org/10.1080/21645515.2015.1101198

13 Schink, T., Holstiege, J., Kowalzik, F., Zepp, F., & Garbe, E. (2014). Risk of febrile convulsions after MMRV vaccination in comparison to MMR or MMR+V vaccination. Vaccine, 32(6), 645-650. https://doi.org/ 10.1016/j.vaccine.2013.12.011

14 Goh, P., Lim, F. S., Han, H. H., & Willems, P. (2007). Safety and immunogenicity of early vaccination with two doses of tetravalent measles-mumps-rubella-varicella (MMRV) vaccine in healthy children from 9 months of age. Infection, 35(5), 326-333. https://doi.org/10.1007/s15010-007-6337-z

15 Lieberman, J. M., Williams, W. R., Miller, J. M., Black, S., Shinefield, H., Henderson, F., Marchant, C. D., Werzberger, A., Halperin, S., Hartzel, J.. Klopfer, S., Schödel, F., Kuter, B. J., & Consistency Lot Study Group for ProQuad (2006). The safety and immunogenicity of a quadrivalent measles, mumps, rubella and varicella vaccine in healthy children: a study of manufacturing consistency and persistence of antibody. The Pediatric infectious disease journal, 25(7), 615-622. https://doi.org/10.1097/01. inf.0000220209.35074.0b

16 Knuf, M., Habermehl, P., Zepp, F., Mannhardt, W., Kuttnig, M., Muttonen, P., Prieler, A., Maurer, H., Bisanz, H., Tornieporth, N., Descamps, D., & Willems, P. (2006). Immunogenicity and safety of two doses of tetravalent measles-mumps-rubella-varicella vaccine in healthy children. the pediatric infectious disease journal, 25(1), 12-18. https://doi.org/10.1097/01.inf.0000195626.35239.58

17 Prymula, R., Bergsaker, M. R., Esposito, S., Gothefors, L., Man, S., Snegova, N., Štefkovičova, M., Usonis, V., Wysocki, J., Douha, M., Vassilev, V.,. Nicholson, O., Innis, B. L., & Willems, P. (2014). Protection against varicella with two doses of combined measles-mumps-rubella-varicella vaccine versus one dose of monovalent varicella vaccine: a multicentre, observer-blind, randomised, controlled trial. Lancet (London, England), 383(9925), 1313-1324. https://doi.org/ 10.1016/s0140-6736(12)61461-5

18 Kang, J. H., Lee, H. J., Kim, K. H., Oh, S. H., Cha, S. H., Lee, J., Kim, N. H., Eun, B. W., Kim, C. H., Hong, Y. J., Kim, H. H., Lee, K. Y., Kim, Y. J., Cho, E. Y., Kim , H. S., Guitton, F., & Ortiz, E. (2016). The Immunogenicity and Safety of a Combined DTaP-IPV//Hib Vaccine Compared with Individual DTaP-IPV and Hib (PRP~T) Vaccines: a Randomized Clinical Trial in South Korean Infants. Journal of Korean medical science, 31(9), 1383-1391. https://doi.org/10.3346/jkms.2016.31.9.1383

19 Kitchin, N., Southern, J., Morris, R., Hemme, F., Cartwright, K., Watson, M., & Miller, E. (2006). A randomized controlled study of the reactogenicity of an acellular pertussis-containing pentavalent infant vaccine compared to a quadrivalent whole cell pertussis-containing vaccine and oral poliomyelitis vaccine, when given concurrently with meningococcal group C conjugate vaccine to healthy UK infants at 2, 3 and 4 months of age. Vaccine, 24(18), 3964-3970. https://doi.org/10.1016/j.vaccine.2006.02.018

20 Halperin, S. A., King, J., Law, B., Mills, E., & Willems, P. (1999). Safety and immunogenicity of Haemophilus influenzae-tetanus toxoid conjugate vaccine given separately or in combination with a three-component acellular pertussis vaccine combined with diphtheria and tetanus toxoids and inactivated poliovirus vaccine for the first four doses. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 28(5), 995-1001. https://doi.org/10.1086 /.

21 Guerra, F. A., Blatter, M. M., Greenberg, D. P., Pichichero, M., Noriega, F. R., & Pentacel Study Group (2009). Safety and immunogenicity of a pentavalent vaccine compared with separate administration of licensed equivalent vaccines in US infants and toddlers and persistence of antibodies before a preschool booster dose: a randomized, clinical trial. Pediatrics, 123(1), 301-312. https://doi. Pediatrics, 123(1), 301-312. . org/10.1542/peds.2007-3317

22 Merchant, N., & Waldrop, J. (2012). The safety advantages of pentavalent vaccines. the Nurse practitioner, 37(4), 48-53. https://doi.org/10.1097/01.NPR.0000412895. 12310.9d

23 Kim, K. H., Kim, C. S., Kim, H. M., Kim, J. D., Ma, S. H., Kim, D. H., Hwang, P. H., Han, J. W., Lee, T. J., Kim, J. H., Karkada, N., Mesaros, N., Sohn, W. Y., & Kim, J. H. (2019). Immunogenicity and safety of a combined DTPa-IPV/Hib vaccine administered as a three-dose primary vaccination course in healthy Korean infants: phase III, randomized study. human vaccines & immunotherapeutics, 15(2), 317-326. https://doi.org/10.1080/21645515.2018.1536588

24 Li, Y., Li, R. C., Ye, Q., Li, C., Liu, Y. P., Ma, X., Li, Y., Zhao, H., Chen, X., Assudani, D., Karkada, N., Han, H. H., Van Der Meeren, O., & Mesaros, N. ( 2017). Safety, immunogenicity and persistence of immune response to the combined diphtheria, tetanus, acellular pertussis, poliovirus and Haemophilus influenzae type b conjugate vaccine (DTPa-IPV/Hib) administered in Chinese infants. human vaccines & immunotherapeutics, 13(3), 588 -https://doi.org/10.1080/21645515.2016.1239670

25 Li, Z., Xu, J., Tan, H., Zhang, C., Chen, J., Ni, L., Yun, X., Huang, Y., & Wang, W. (2020). Safety of pentavalent DTaP-IPV/Hib combination vaccine in post-marketing surveillance in Guangzhou, China, from 2011 to 2017. international journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases, 99, 149-155. https://doi.org /10.1016/j.ijid.2020.07.019

26 Gabutti, G., Bona, G., Dentico, P., Bamfi, F., Hardt, K., Majori, S., Crovari, P., & Cooperative Group for the Study of Combined Vaccines* (2005). Immunogenicity and Reactogenicity following Primary Immunization with a Combined DTaP-HBV Vaccine and a Haemophilus influenzae Type B Vaccine Administered by Separate or Mixed Injection. Clinical drug investigation, 25(5), 315-323. https://doi.org/10.2165/00044011- 200525050-00004

27 Zepp, F., Knuf, M., Heininger, U., Jahn, K., Collard, A., Habermehl, P., Schuerman, L., & Sänger, R. (2004). Safety, reactogenicity and immunogenicity of a combined hexavalent tetanus, diphtheria, acellular pertussis, hepatitis B, inactivated poliovirus vaccine and Haemophilus influenzae type b conjugate vaccine, for primary immunization of infants. Vaccine, 22(17-18), 2226-2233. https ://doi.org/10.1016/j.vaccine.2003.11.044

28 Avdicova, M., Crasta, P. D., Hardt, K., & Kovac, M. (2015). Lasting immune memory against hepatitis B following challenge 10-11 years after primary vaccination with either three doses of hexavalent DTPa-HBV- IPV/Hib or monovalent hepatitis B vaccine at 3, 5 and 11-12 months of age. Vaccine, 33(23), 2727-2733. https://doi.org/10.1016/j. vaccine.2014.06.070

29 Lim, F. S., Han, H. H., Jacquet, J. M., & Bock, H. L. (2007). Primary vaccination of infants against hepatitis B can be completed using a combined hexavalent diphtheria-tetanus-acellular pertussis-hepatitis B -Inactivated poliomyelitis-Haemophilus influenzae type B vaccine. Annals of the Academy of Medicine, Singapore, 36(10), 801-806.

30 Cheng, H. K., Rajadurai, V. S., Amin, Z., Sriram, B., Yee, M. F., Han, H. H., Bock, H. L., & Safary, A. (2004). Immunogenicity and reactogenicity of two regimens of diphtheria-tetanus-acellular pertussis-hepatitis B-inactivated polio and Haemophilus influenzae type b vaccines administered to infants primed at birth with hepatitis B vaccine. the Southeast Asian journal of tropical medicine and public health, 35(3), 685-692.

31 Avdicová, M., Prikazský, V., Hudecková, H., Schuerman, L., & Willems, P. (2002). Immunogenicity and reactogenicity of a novel hexavalent DTPa-HBV-IPV/Hib vaccine compared to separate concomitant injections of DTPa-IPV/Hib and HBV vaccines, when administered according to a 3-, 5- and 11-month vaccination schedule. European journal of pediatrics, 161(11), 581- 587. 587. https://doi.org/10.1007/s00431-002-1079-5

32 Arístegui, J., Dal-Ré, R., Díez-Delgado, J., Marés, J., Casanovas, J. M., García-Corbeira, P., De Frutos, E., Van Esso, D., Verdaguer, J., De la Flor, J ., Moraga, F., Boceta, R., & García-Martínez, J. A. (2003). Comparison of the reactogenicity and immunogenicity of a combined diphtheria, tetanus, acellular pertussis, hepatitis B, inactivated polio (DTPa- HBV-IPV) vaccine, mixed with the Haemophilus influenzae type b (Hib) conjugate vaccine and administered as a single injection, with the DTPa-IPV/Hib and hepatitis B vaccines administered in a single injection. and hepatitis B vaccines administered in two simultaneous injections to infants at 2, 4 and 6 months of age. Vaccine, 21(25-26), 3593-3600. https://doi.org/10.1016/s0264-410x(03)00420-1

33 Klein, N. P., Abu-Elyazeed, R., Cheuvart, B., Janssens, W., & Mesaros, N. (2019). Immunogenicity and safety following primary and booster vaccination with a hexavalent diphtheria, tetanus, acellular pertussis, hepatitis B inactivated poliovirus and Haemophilus influenzae type b vaccine: a randomized trial in the United States. human vaccines & immunotherapeutics. 15(4), 809-821. https://doi.org/10.1080/21645515.2018.1549449

代表性地区的基本情况、接种政策及效果、宣传推动情况

(1) 成都市

 

基本情况

成都市2022年度GDP为20817.5亿元,排名全国城市第七。成都市出台了《健康城市建设推动健康中国行动创新模式成都市宫颈癌综合防控试点工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为13-14岁在校且无HPV疫苗接种史女生。免疫程序为国产二价0-6二剂次、进口二价0-1-6三剂次、进口四价0-2-6三剂次。资助政策为国产二价疫苗(沃泽惠)免费,其它疫苗补贴600元/人,并自付20元/剂接种费。疫苗接种按照属地化管理原则,由学校所在地预防接种单位负责。截至2022年1月,目标人群首针接种率达90.04%[14]。

宣传推动

成都市开展多形式、多载体的健康教育宣传。形式包括讲座、知晓日、义诊咨询、专题课程、专题活动等,载体包括宣传册、宣传栏、展板、电视、微信、视频号、抖音平台等,覆盖相关医疗机构300余、社区300余个、和公众场所90余个。面向适龄女孩及监护人、适龄女性及全体市民开展广泛宣教,宣传材料发放至近9万名群众,讲座活动覆盖近2万名群众。宣教内容包括HPV疫苗接种、两癌防控、其它女性常见疾病防控等。

(2) 济南市

 

基本情况

济南市2022年度GDP为12027.5亿元,位列全国城市排名20。2021年,济南市出台《健康城市建设推动健康中国行动创新模式试点一济南市宫颈癌综合防治工作方案(2021—2025年)》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为≤14周岁且无HPV疫苗接种史的在校七年级女生。免疫程序为国产二价0-6二剂次。资助政策免费接种。疫苗接种按照属地化管理原则,安排分班级分时段前往学校所在地的预防接种单位进行接种。截至2022年11月,目标人群首针接种率达
94.4%[15].

宣传推动

济南市开展多形式、多载体的健康教育宣传。形式包括采访、线上线下专题活动,载体包括网络媒体、纸媒、科普展板、宣传手册、子宫颈癌与HPV疫苗知识读本、济南HPV疫苗接种手册,宣教人群广泛涵盖全体市民,宣教内容包括HPV疫苗接种、两癌防控等知识。

(3) 鄂尔多斯市

 

基本情况

鄂尔多斯市2022年度GDP为5613.44亿元,全国地级市第45位。2021年,鄂尔多斯市出台了《健康城市建设推动健康鄂尔多斯行动创新模式工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

2020年8月,鄂尔多斯市在准格尔旗率先开展HPV疫苗免费接种项目。目标人群为全市当年13-18岁在校且无HPV疫苗接种史女生。免疫程序为进口二价0-1-6三剂次,

2023年起调整为13-14岁女孩0-6二剂次。资助政策为疫苗免费,自付20元/剂接种费。组织方式为疫苗接种服务中心根据任务安排联系学校,有规划的通知适龄女孩前来完成HPV疫苗接种。截至2022年11月,目标人群首针接种率接近70%[16]。

2022年8月,启动准格尔旗和达拉特旗高三女生接种四价和九价HPV疫苗的试点工作,利用暑假时间展开接种,力争在2023年年底达成90%的接种目标[17]。自鄂尔多斯之后,由政府主导的HPV疫苗惠民行动在多地等涌现。值得注意的是,近年来多主体参与到HPV疫苗支持项目,如慈善总会、医院、妇联等为主体单位牵头组织开展了一些公益活动。

宣传推动

鄂尔多斯市开展多形式、多载体的健康教育宣传。形式包括讲座、知晓日、义诊咨询、专题课程、专题活动等,载体包括宣传册、宣传栏、展板、电视、微信、视频号、抖音平台等,宣教人群广泛涵盖在校女孩及监护人,适龄女性及全体市民。宣教内容包括HPV疫苗接种、两癌防控、其它女性常见疾病防控等。

(4) 西安市

 

基本情况

西安市2022年度GDP为11486.51亿元,排名全国第22位。2021年,西安市出台了《西安市健康城市建设推动健康中国行动创新模式试点宫颈癌综合防治工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为全市年龄满13周岁(初中)在校女生。免疫程序为国产二价0-6二剂次,进口二价0-1-6三剂次,进口四价和进口九价0-2-6三剂次。接种政策为自愿自费。各区(县)合理设立HPV疫苗专项疫苗接种门诊承担接种任务,并及时将接种信息统一录入儿童免疫规划信息平台。

宣传推动

西安市出台了《西安市宫颈癌综合防治宣传方案》(市健办发〔2022〕12号)。通过媒体宣传、社区活动、义诊等形式,宣传册、宣传栏、展板、电视、微信公众号、报纸等载体普及宫颈癌防治相关知识。

(5) 西藏自治区

 

基本情况

西藏自治区2022年度GDP为2132.64亿元,经济总量整体规模相对其他省份较小,人均GDP处于全国中等偏下水平。2022年出台《西藏自治区妇女“两癌”综合防治工作实施方案》等系列政策推动适龄女孩HPV疫苗接种。

接种政策及效果

目标人群为13-14岁在校女生。免疫程序为国产二价0-6二剂次。资助政策为免费。由学校组织,接种者在商定接种时间携带个人身份证明材料与法定监护人一同前往定点接种单位接种。

宣传推动

充分利用网络、电视、广播、报刊等媒介,以群众喜闻乐见的宣传方式,对适龄在校女生HPV疫苗接种工作的意义及内容进行广泛宣传。

近年来各地HPV疫苗惠民项目信息

“疾病负担”指标解读

疾病负担(burden of disease, BOD)是指疾病造成的失能(伤残)、生活质量下降和过早死亡对健康和社会造成的总损失,包括疾病的流行病学负担和经济负担两个方面。

 

在疾病的流行病学方面,衡量疾病负担的常用指标包括传统指标和综合指标。

 

传统指标

传统疾病负担的衡量指标包括:用于描述和反映健康状况与水平的常规指标,如死亡人数、伤残人数和患病人数等绝对数指标;以及用来比较不同特征人群疾病分布差异的指标,如发病率、伤残率、患病率、死亡率、门诊和住院率等相对数指标。

 

上述传统疾病负担的衡量指标基本上只考虑了人口的生存数量,而忽略了生存质量,不够全面;但优势在于资料相对计算方便,结果直观,可用于各种疾病的一般性描述。

 

综合指标

疾病负担不等同于死亡人数,综合指标弥补了传统指标的单一性,且可以让各种不同疾病造成的负担之间相互比较。

 

潜在寿命损失年(YPLL):通过疾病造成的寿命损失来估计疾病负担的大小。但忽略了疾病造成的失能对生存质量的影响。

 

伤残调整寿命年(DALYs):将死亡和失能相结合,用一个指标来描述疾病的这两方面的负担。它包括因早死造成健康生命年的损失(YLL)和因伤残造成健康生命年的损失(YLD),即DALY=YLL+YLD。目前,DALY是国内外一致公认的最具代表性、运用最多的疾病负担评价指标。

 

健康期望寿命(HALE):指具有良好健康状态的生命年以及个体在比较舒适的状态下生活的平均预期时间,综合考虑生命的质量和数量两方面。

 

 

随着疾病负担研究的深入,其测量范围从流行病学负担扩大到经济负担。

 

疾病经济负担是由于发病、伤残(失能)和过早死亡给患者本人、家庭以及社会带来的经济损失,和由于预防治疗疾病所消耗的经济资源。

详细见:疾病的“经济负担”怎么计算?

 

参考资料:

陈文. 卫生经济学 [M]. 人民卫生出版社. 2017.

李茜瑶,周莹,黄辉等.疾病负担研究进展[J].中国公共卫生,2018,34(05):777-780.

什么是“年龄标化”?

在流行病学研究中,年龄是多种疾病的危险因素。以发病率为例,该指标反映了一定时期内,特定人群中癌症新发病例的情况。由于年龄是癌症发生的一个重要影响因素,年龄越大,发病率就越高。

 

如果两个国家的人群年龄结构相差很大,例如A市老年人口比例更大,B市年轻人口占比更高,直接比较两地癌症发病率的高低,我们不能确定发病率较高的市,是因为年龄构成不同还是因为其他影响因素(如饮食习惯、环境等)所导致。因此,需要用“年龄标化”的统计学方法,进一步处理数据,排除年龄影响因素的干扰,再来比较两地的发病率数据。

 

以发病率为例,即把原始数据套到一个“标准年龄结构人群里”,计算出”年龄标化发病率“,这样人群结构不同的A市和B市,就能在同一个指标尺度下进行“发病率”比较。年龄标化通常有“中标率”,即我国各地基于某一年份的中国人口年龄结构构成作为标准计算,国内不同地区的疾病数据比较采用的是“中标率”;另一种是“世标率”,即用世界标准人口构成机型标化计算,适用于国与国之间的指标比较。

 

同样地,以死亡率为例,应特别注意各之间地人口构成的差异。用标准化死亡率进行比较才能得出正确结论。如甲、乙两地在未标化前的肺癌死亡率相同,但实际上乙地人群的肺癌死亡率要明显地高于甲地,其原因在于甲地男性老年人口居多,而肺癌的死亡率又与年龄和性别有关,所以用未标化率进行比较时,就会得出甲乙两地肺癌死亡率相同的错误结论。

 

参考资料:

 

张科宏教授:年龄标化的患病率 – 丁香公开课 (dxy.cn)

科学网—癌症(粗)发病率与标化发病率的区别 – 杨雷的博文 (sciencenet.cn)

WHO年龄标化死亡率定义及计算方法

沈洪兵,齐秀英. 流行病学 [M]. 人民卫生出版社. 2015.

疾病的“经济负担”怎么计算?

疾病经济负担是由于发病、伤残(失能)和过早死亡给患者本人、家庭以及社会带来的经济损失,和由于预防治疗疾病的费用。通过计算疾病的经济负担,可以从经济层面上研究或比较不同疾病对人群健康的影响。

总疾病经济负担包括直接疾病经济负担、间接疾病经济负担和无形疾病经济负担。

直接经济负担:指直接用于预防和治疗疾病的总费用,包括直接医疗经济负担和直接非医疗经济负担两部分。直接医疗经济负担是指在医药保健部门购买卫生服务的花费,主要包括门诊费(如挂号费、检查费、处置费、诊断费、急救费等)、住院费(如手术费、治疗费等)和药费等。直接非医疗经济负担包括和疾病有关的营养费、交通费、住宿费、膳食费、陪护费和财产损失等。

间接经济负担:指由于发病、伤残(失能)和过早死亡给患者本人和社会带来的有效劳动力损失而导致的经济损失。具体包括:劳动工作时间损失、个人工作能力和效率降低造成的损失、陪护病人时损失的劳动工作时间、精神损失等。

无形经济负担:指患者及亲友因疾病在心理、精神和生活上遭受的痛苦、悲哀、不便等生活质量下降而产生的无形损失。

 

参考资料:

陈文. 卫生经济学 [M]. 人民卫生出版社. 2017.

李茜瑶,周莹,黄辉等.疾病负担研究进展[J].中国公共卫生,2018,34(05):777-780.