The Effectiveness of Including PCV in Population-Based Immunization Programs

The Effectiveness of Including PCV in Population-Based Immunization Programs

Reduction of Morbidity

Current surveillance data indicates that the incidence of serotype 3 invasive pneumococcal disease (IPD) in children has decreased following the introduction of PCV13. For example, in the United States, the incidence of serotype 3 IPD in children under 5 years of age dropped from 1.1 cases per 100,000 in 2010 to 0.25 cases per 100,000 in 2013 after the introduction of PCV131. Similarly, in the United Kingdom, the number of serotypes 3 IPD cases in children under 5 decreased following the introduction of PCV13, with the incidence reported in 2013-2014 being 68% lower (95% CI: 6%-89%) than in 20082.

Another study reviewed the population effect of PCV introduction in English and Wales by comparing the incidence rate ratio against pre-PCV13 (2008/09-2009/10) and pre-PCV7 (2000/01-2005/06) baselines. By 2016/17, PCV7-type invasive pneumococcal disease incidence across all age groups had decreased by 97% compared with the pre-PCV7 period, whereas additional PCV13-type invasive pneumococcal disease decreased by 64% since the introduction of PCV13 3.

After Mongolia gradually included PCV13 in its routine infant immunization schedule in 2016, the incidence of pneumonia among children aged 2-59 months significantly decreased, and the overall carriage rate of PCV13 serotypes dropped by 44%4.

The United States was the first country in the world to incorporate the PCV vaccine into its national immunization program (PCV7 was introduced in 2000). A modeling study published in 2021 aimed to quantify the relationship between PCV vaccination and the incidence of IPD over 20 years since the introduction of PCV7 and PCV13 in the U.S. The results showed that the PCV vaccine prevented at least 282,000 cases of IPD, including approximately 16,000 cases of meningitis, about 172,000 cases of bacteremia, and around 55,000 cases of bacterial pneumonia. Additionally, PCV vaccination prevented 97 million visits for otitis media, 438,914 to 706,345 hospitalizations for pneumonia, and 2,780 deaths. The number of IPD cases dropped from 15,707 in 1997 to 1,382 in 2019, a 91% decrease. The annual number of otitis media visits decreased from 78 visits per 100 children before the introduction of PCV13 to 46 visits per 100 children after its introduction, a 41% reduction. Annual pneumonia hospitalizations decreased from 110,000-175,000 in 1997 to 37,000 in 2019, a reduction of 66%-79%. The study confirmed the significant benefits of PCV vaccination in preventing IPD in children5.

A systematic review published in 2019 on the effectiveness of PCV10/PCV13 in preventing IPD among children under five in Africa showed an overall reduction in IPD of 31.7% to 80.1% following the introduction of PCV. The decline in IPD caused by vaccine serotypes was even more pronounced, ranging from 35.0% to 92.0%, with a greater reduction (55.0% to 89.0%) observed in children under 24 months. However, the relative proportion of serotypes 1, 5, and 19A doubled after the vaccine rollout6.

The varied effect due to the difference of vaccination schedule

In high-income countries that have included PCV in their national immunization programs, a 3-dose vaccination schedule can provide significant protection for children, with the specific schedule depending on the implementation context7. A 3-dose primary immunization schedule can offer good protection during the first year of a child’s life when the risk of disease is the highest. A booster dose (e.g., 3-dose primary series + 1 booster dose) can provide stronger long-term protection, particularly against serotype 18.

A systematic review in 2013 compared the effect of different dosing schedule of PCV on vaccine-type invasive pneumococcal disease (VT-IPD) among young children. The study supports the use of booster dose. In clinical trials, vaccine efficacy ranged from 65% to 71% with 3+0 schedule and 83% to 94% with 3+1 schedule. Surveillance data and case number showed the reduction of VT-IPD up to 100% with 2+1 or 3+1 schedules, and 90% reduction with 3+0 schedules. The reductions would happen as early as 1 year after PCV introduction9.

Table 1 Included Observational Studies Documenting Impact of PCV Introduction on VT-IPD, Meningitis or Bacteremia Among Young Children Before and After Vaccine Introduction, by PCV Dosing Schedule Setting

Reduce the disease burden by herd protection

After the introduction of the PCV vaccine in most countries, there has been a decline in the incidence of IPD and pneumonia among adults. The effectiveness of herd immunity depends on the vaccination coverage rate and the duration since the introduction and implementation of PCV; the longer the vaccine has been in use, the more pronounced the indirect effects. Achieving strong indirect protection is only possible in populations with high vaccine coverage rates (above 70%-80%). Therefore, vaccination of children has a significant impact on the level of herd protection7.

Monitoring data from the United States shows that following the introduction of PCV7, there was a statistically significant decline in IPD incidence among adults, although the extent of the decline varied, with reductions up to 46.0%10. Most studies observed the significant decrease in IPD incidence among individuals aged 65 and older 7. This change is mainly associated with the duration since PCV was introduced. In countries where PCV7 was introduced later, there was also a general trend of IPD incidence decreasing, though the degree of reduction varied significantly. For example, three years after the introduction of PCV7, Denmark saw an 8.8% reduction in IPD incidence among those aged 65 and older in 201011; in Taiwan, China, seven years after PCV7 implementation, the overall adult IPD incidence rate dropped by as much as 70.0% by 201212.

Multiple studies have shown that the introduction of PCV10 and/or PCV13 also reduced IPD incidence, though the extent of reduction varied across different regions. For instance, in Ontario, Canada, the overall IPD incidence in adults aged 65 and older decreased by up to 61.12% following the introduction of PCV7, PCV10, and PCV1313. In contrast, in Israel, among individuals aged 18 and older, PCV7 and PCV13 only led to a 21.3% overall reduction in IPD incidence14. A study in Alaska, USA, found a significant decrease in IPD incidence among adults aged 18 to 44 after the introduction of PCV13, but no significant changes were observed in individuals aged 45 and older15.

Figure 1 Change in Incidence of Streptococcus Pneumoniae Disease in Adults with PCV Vaccine Introduction7

Projected Timeline for Disease Burden Reduction

A 2017 study conducted a systematic review and meta-analysis about the indirect impact of PCV childhood immunization on the overall population’s incidence of invasive pneumococcal disease (IPD). The analysis included 242 studies and found that implementing a childhood PCV vaccination program could provide substantial protection to the entire population within ten years. When evaluating vaccination programs for the elderly, the indirect protective effect from the childhood PCV vaccination program should be taken into account16.

On average, it took 8.9 years (95% CI: 7.8-10.3 years) for the incidence of IPD caused by PCV7 serotypes to decrease by 90% across all age groups. For the six additional serotypes covered by PCV13, the estimated average time to achieve a 90% reduction in incidence was 9.5 years (6.1-16.6 years). The herd immunity effect will continue to accumulate over time16.

Table 2 Estimated Timeframe for IPD Reduction in Unvaccinated Age Groups Following PCV Introduction in Children

  Relative Risk(95% CI)50% reduction in program years (95% CI)*90% reduction in program years (95% CI)*
PCV7 serotypes
Vaccine serotypes (all ages)
 40.77 (0.72–0.84)2.8 (2.0–3.8)9.1 (7.1–12.2)
 6B0.79 (0.74–0.84)2.7 (1.9–3.6)9.7 (7.7–12.8)
 9V0.70 (0.66–0.77)2.5 (2.0–3.1)7.1 (5.9–8.8)
 140.76 (0.69–0.85)1.9 (0.9–3.2)8.0 (5.9–12.6)
 18C0.79 (0.73–0.86)4.1 (3.3–5.8)11.1 (8.8–17.0)
 19F0.84 (0.80–0.90)5.1 (4.1–7.0)14.7 (11.8–22.2)
 23F0.73 (0.68–0.79)2.7 (2.1–3.4)8.0 (6.6–10.0)
Cross-reactive serotypes (all ages)
 6A0.84 (0.78–0.89)6.4 (5.0–9.3)15.4 (11.8–23.1)
 9N1.03 (0.95–1.13)....
 19A0.97 (0.84–1.15)....
All-age Group (All PCV7 serotypes)
 All ages0.79 (0.75–0.81)2.3 (1.9–2.7)8.9 (7.8–10.3)
 <5 years0.62 (0.55–0.70)1.2 (0.8–1.7)4.6 (3.9–6.0)
 5–18 years0.81 (0.72–0.91)3.1 (1.9–4.9)10.8 (7.5–21.1)
 19–49 years0.85 (0.76–0.96)1.9 (0.0–3.8)11.9 (8.0–30.0)
 50–64 years0.78 (0.73–0.85)2.7 (2.0–3.4)9.1 (7.5–12.2)
 ≥65 years0.77 (0.75–0.80)2.6 (2.3–3.0)8.9 (7.9–10.3)
Addition of PCV13 serotype
Vaccine serotypes (all ages)
 6A0.87 (0.68–1.12)0.4 (0.0–30.0)11.9 (4.8–30.0)
 10.76 (0.57–1.04)2.2 (0.6–30.0)7.8 (4.2–30.0)
 31.03 (0.88–1.22)30.0 (6.8–30.0)30.0 (20.9–30.0)
 50.59 (0.04–3.06)0.1 (0.0–30.0)5.7 (0.0–30.0)
 7F0.83 (0.67–1.01)5.4 (2.9–30.0)14.1 (7.1–30.0)
 19A0.74 (0.54–0.92)2.9 (2.0–10.5)7.6 (4.7–28.4)
All-age Group (Addition of PCV13serotype)
 All groups0.75 (0.64–0.87)3.6 (2.5–6.1)9.5 (6.1–16.6)
 <5 years0.93 (0.30–2.64)0.0 (0.0–30.0)13.8 (0.0–30.0)
 5–18 years0.78 (0.55–1.08)3.0 (0.0–30.0)9.5 (4.7–30.0)
 19–49 years0.74 (0.56–0.99)3.1 (1.5–30.0)8.5 (4.6–30.0)
 50–64 years0.77 (0.59–0.99)4.3 (2.4–30.0)10.4 (5.6–30.0)
 ≥65 years0.77 (0.66–0.90)4.1 (2.6–7.4)10.3 (6.4–20.7)
IPD
All-age Group(IPD)
 All groups0.99 (0.96–0.99)....
 <5 years0.97 (0.91–1.01)....
 5–18 years0.97 (0.92–1.01)....
 19–49 years0.95 (0.91–0.99)....
 50–64 years0.96 (0.93–0.99)....
 ≥65 years0.97 (0.95–0.99)....
..:Not estimated
*The maximum cap is 30 years, with more than 30 years representing a 50 or 90 percent reduction that will never be reached.    

Content Editor: Xiaotong Yang, Ziqi Liu

Page Editor: Ziqi Liu


References

  1. Centers for Disease Control and Prevention. Invasive pneumococcal disease in the U.S., 2008–2016. https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2017-10/pneumo-04-matanock.pdf 
  2. Waight PA, Andrews NJ, Ladhani SN, Sheppard CL, Slack MP, Miller E. Effect of the 13-valent pneumococcal conjugate vaccine on invasive pneumococcal disease in England and Wales 4 years after its introduction: an observational cohort study. Lancet Infect Dis 2015; 15:535–43. 
  3. Ladhani SN, Collins S, Djennad A, et al. Rapid increase in non-vaccine serotypes causing invasive pneumococcal disease in England and Wales, 2000-17: a prospective national observational cohort study. Lancet Infect Dis. 2018 Apr;18(4):441-451. doi: 10.1016/S1473-3099(18)30052-5. Epub 2018 Jan 26. Erratum in: Lancet Infect Dis. 2018 Apr;18(4):376. doi: 10.1016/S1473-3099(18)30074-4.
  4. von Mollendorf C, Ulziibayar M, Nguyen CD, Batsaikhan P, Suuri B, Luvsantseren D, Narangerel D, de Campo J, de Campo M, Tsolmon B, Demberelsuren S, Dunne EM, Satzke C, Mungun T, Mulholland EK. Effect of Pneumococcal Conjugate Vaccine on Pneumonia Incidence Rates among Children 2-59 Months of Age, Mongolia, 2015-2021. Emerg Infect Dis. 2024 Mar;30(3):490-498. doi: 10.3201/eid3003.230864.
  5. Wasserman M, Chapman R, Lapidot R, et al. Twenty-Year Public Health Impact of 7- and 13-Valent Pneumococcal Conjugate Vaccines in US Children. Emerg Infect Dis. 2021;27(6):1627-1636.
  6. Ngocho JS, Magoma B, Olomi GA, et al. Effectiveness of pneumococcal conjugate vaccines against invasive pneumococcal disease among children under five years of age in Africa: A systematic review. PLoS One. 2019 Feb 19;14(2): e0212295.
  7. Tsaban G, Ben-Shimol S. Indirect (herd) protection, following pneumococcal conjugated vaccines introduction: A systematic review of the literature. Vaccine. 2017 May 19;35(22):2882-2891.
  8. Klugman KP, Madhi SA, Adegbola RA, et al. Timing of serotype 1 pneumococcal disease suggests the need for evaluation of a booster dose. Vaccine. 2011;29:3372–3373.
  9. Conklin, L., Loo, J. D., Kirk, J., Fleming-Dutra, K. E., Deloria Knoll, M., Park, D. E., Goldblatt, D., O’Brien, K. L., & Whitney, C. G. (2014). Systematic review of the effect of pneumococcal conjugate vaccine dosing schedules on vaccine-type invasive pneumococcal disease among young children. The Pediatric infectious disease journal33 Suppl 2(Suppl 2 Optimum Dosing of Pneumococcal Conjugate Vaccine For Infants 0 A Landscape Analysis of Evidence Supportin g Different Schedules), S109–S118. https://doi.org/10.1097/INF.0000000000000078
  10. Muhammad RD, Oza-Frank R, Zell et al. Epidemiology of invasive pneumococcal disease among high-risk adults since the introduction of pneumococcal conjugate vaccine for children. Clin Infect Dis. 2013 Mar;56(5):e59-67. doi: 10.1093/cid/cis971.
  11. Hennessy TW, Singleton RJ, Bulkow LR, et al. Impact of heptavalent pneumococcal conjugate vaccine on invasive disease, antimicrobial resistance and colonization in Alaska Natives: progress towards elimination of a health disparity. Vaccine. 2005 Dec 1;23(48-49):5464-73. doi: 10.1016/j.vaccine.2005.08.100.
  12. Lai CC, Lin SH, Liao CH, et al. Decline in the incidence of invasive pneumococcal disease at a medical center in Taiwan, 2000-2012. BMC Infect Dis. 2014 Feb 11;14:76. doi:10.1186/1471-2334-14-76.
  13. Rudnick W, Liu Z, Shigayeva A, et al. Pneumococcal vaccination programs and the burden of invasive pneumococcal disease in Ontario, Canada, 1995-2011. Vaccine. 2013 Dec 2;31(49):5863-71. doi: 10.1016/j.vaccine.2013.09.049.
  14. Regev-Yochay G, Paran Y, Bishara J, et al. Early impact of PCV7/PCV13 sequential introduction to the national pediatric immunization plan, on adult invasive pneumococcal disease: A nationwide surveillance study. Vaccine. 2015 Feb 25;33(9):1135-42. doi:10.1016/j.vaccine.2015.01.030. 
  15. Bruce MG, Singleton R, Bulkow L, et al. Impact of the 13-valent pneumococcal conjugate vaccine (pcv13) on invasive pneumococcal disease and carriage in Alaska. Vaccine. 2015 11;33(38):4813-9. doi: 10.1016/j.vaccine.2015.07.080.
  16. Shiri T, Datta S, Madan J, et al. Indirect effects of childhood pneumococcal conjugate vaccination on invasive pneumococcal disease: a systematic review and meta-analysis. Lancet Glob Health. 2017 Jan;5(1):e51-e59.

代表性地区的基本情况、接种政策及效果、宣传推动情况

(1) 成都市

 

基本情况

成都市2022年度GDP为20817.5亿元,排名全国城市第七。成都市出台了《健康城市建设推动健康中国行动创新模式成都市宫颈癌综合防控试点工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为13-14岁在校且无HPV疫苗接种史女生。免疫程序为国产二价0-6二剂次、进口二价0-1-6三剂次、进口四价0-2-6三剂次。资助政策为国产二价疫苗(沃泽惠)免费,其它疫苗补贴600元/人,并自付20元/剂接种费。疫苗接种按照属地化管理原则,由学校所在地预防接种单位负责。截至2022年1月,目标人群首针接种率达90.04%[14]。

宣传推动

成都市开展多形式、多载体的健康教育宣传。形式包括讲座、知晓日、义诊咨询、专题课程、专题活动等,载体包括宣传册、宣传栏、展板、电视、微信、视频号、抖音平台等,覆盖相关医疗机构300余、社区300余个、和公众场所90余个。面向适龄女孩及监护人、适龄女性及全体市民开展广泛宣教,宣传材料发放至近9万名群众,讲座活动覆盖近2万名群众。宣教内容包括HPV疫苗接种、两癌防控、其它女性常见疾病防控等。

(2) 济南市

 

基本情况

济南市2022年度GDP为12027.5亿元,位列全国城市排名20。2021年,济南市出台《健康城市建设推动健康中国行动创新模式试点一济南市宫颈癌综合防治工作方案(2021—2025年)》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为≤14周岁且无HPV疫苗接种史的在校七年级女生。免疫程序为国产二价0-6二剂次。资助政策免费接种。疫苗接种按照属地化管理原则,安排分班级分时段前往学校所在地的预防接种单位进行接种。截至2022年11月,目标人群首针接种率达
94.4%[15].

宣传推动

济南市开展多形式、多载体的健康教育宣传。形式包括采访、线上线下专题活动,载体包括网络媒体、纸媒、科普展板、宣传手册、子宫颈癌与HPV疫苗知识读本、济南HPV疫苗接种手册,宣教人群广泛涵盖全体市民,宣教内容包括HPV疫苗接种、两癌防控等知识。

(3) 鄂尔多斯市

 

基本情况

鄂尔多斯市2022年度GDP为5613.44亿元,全国地级市第45位。2021年,鄂尔多斯市出台了《健康城市建设推动健康鄂尔多斯行动创新模式工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

2020年8月,鄂尔多斯市在准格尔旗率先开展HPV疫苗免费接种项目。目标人群为全市当年13-18岁在校且无HPV疫苗接种史女生。免疫程序为进口二价0-1-6三剂次,

2023年起调整为13-14岁女孩0-6二剂次。资助政策为疫苗免费,自付20元/剂接种费。组织方式为疫苗接种服务中心根据任务安排联系学校,有规划的通知适龄女孩前来完成HPV疫苗接种。截至2022年11月,目标人群首针接种率接近70%[16]。

2022年8月,启动准格尔旗和达拉特旗高三女生接种四价和九价HPV疫苗的试点工作,利用暑假时间展开接种,力争在2023年年底达成90%的接种目标[17]。自鄂尔多斯之后,由政府主导的HPV疫苗惠民行动在多地等涌现。值得注意的是,近年来多主体参与到HPV疫苗支持项目,如慈善总会、医院、妇联等为主体单位牵头组织开展了一些公益活动。

宣传推动

鄂尔多斯市开展多形式、多载体的健康教育宣传。形式包括讲座、知晓日、义诊咨询、专题课程、专题活动等,载体包括宣传册、宣传栏、展板、电视、微信、视频号、抖音平台等,宣教人群广泛涵盖在校女孩及监护人,适龄女性及全体市民。宣教内容包括HPV疫苗接种、两癌防控、其它女性常见疾病防控等。

(4) 西安市

 

基本情况

西安市2022年度GDP为11486.51亿元,排名全国第22位。2021年,西安市出台了《西安市健康城市建设推动健康中国行动创新模式试点宫颈癌综合防治工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为全市年龄满13周岁(初中)在校女生。免疫程序为国产二价0-6二剂次,进口二价0-1-6三剂次,进口四价和进口九价0-2-6三剂次。接种政策为自愿自费。各区(县)合理设立HPV疫苗专项疫苗接种门诊承担接种任务,并及时将接种信息统一录入儿童免疫规划信息平台。

宣传推动

西安市出台了《西安市宫颈癌综合防治宣传方案》(市健办发〔2022〕12号)。通过媒体宣传、社区活动、义诊等形式,宣传册、宣传栏、展板、电视、微信公众号、报纸等载体普及宫颈癌防治相关知识。

(5) 西藏自治区

 

基本情况

西藏自治区2022年度GDP为2132.64亿元,经济总量整体规模相对其他省份较小,人均GDP处于全国中等偏下水平。2022年出台《西藏自治区妇女“两癌”综合防治工作实施方案》等系列政策推动适龄女孩HPV疫苗接种。

接种政策及效果

目标人群为13-14岁在校女生。免疫程序为国产二价0-6二剂次。资助政策为免费。由学校组织,接种者在商定接种时间携带个人身份证明材料与法定监护人一同前往定点接种单位接种。

宣传推动

充分利用网络、电视、广播、报刊等媒介,以群众喜闻乐见的宣传方式,对适龄在校女生HPV疫苗接种工作的意义及内容进行广泛宣传。

近年来各地HPV疫苗惠民项目信息

“疾病负担”指标解读

疾病负担(burden of disease, BOD)是指疾病造成的失能(伤残)、生活质量下降和过早死亡对健康和社会造成的总损失,包括疾病的流行病学负担和经济负担两个方面。

 

在疾病的流行病学方面,衡量疾病负担的常用指标包括传统指标和综合指标。

 

传统指标

传统疾病负担的衡量指标包括:用于描述和反映健康状况与水平的常规指标,如死亡人数、伤残人数和患病人数等绝对数指标;以及用来比较不同特征人群疾病分布差异的指标,如发病率、伤残率、患病率、死亡率、门诊和住院率等相对数指标。

 

上述传统疾病负担的衡量指标基本上只考虑了人口的生存数量,而忽略了生存质量,不够全面;但优势在于资料相对计算方便,结果直观,可用于各种疾病的一般性描述。

 

综合指标

疾病负担不等同于死亡人数,综合指标弥补了传统指标的单一性,且可以让各种不同疾病造成的负担之间相互比较。

 

潜在寿命损失年(YPLL):通过疾病造成的寿命损失来估计疾病负担的大小。但忽略了疾病造成的失能对生存质量的影响。

 

伤残调整寿命年(DALYs):将死亡和失能相结合,用一个指标来描述疾病的这两方面的负担。它包括因早死造成健康生命年的损失(YLL)和因伤残造成健康生命年的损失(YLD),即DALY=YLL+YLD。目前,DALY是国内外一致公认的最具代表性、运用最多的疾病负担评价指标。

 

健康期望寿命(HALE):指具有良好健康状态的生命年以及个体在比较舒适的状态下生活的平均预期时间,综合考虑生命的质量和数量两方面。

 

 

随着疾病负担研究的深入,其测量范围从流行病学负担扩大到经济负担。

 

疾病经济负担是由于发病、伤残(失能)和过早死亡给患者本人、家庭以及社会带来的经济损失,和由于预防治疗疾病所消耗的经济资源。

详细见:疾病的“经济负担”怎么计算?

 

参考资料:

陈文. 卫生经济学 [M]. 人民卫生出版社. 2017.

李茜瑶,周莹,黄辉等.疾病负担研究进展[J].中国公共卫生,2018,34(05):777-780.

什么是“年龄标化”?

在流行病学研究中,年龄是多种疾病的危险因素。以发病率为例,该指标反映了一定时期内,特定人群中癌症新发病例的情况。由于年龄是癌症发生的一个重要影响因素,年龄越大,发病率就越高。

 

如果两个国家的人群年龄结构相差很大,例如A市老年人口比例更大,B市年轻人口占比更高,直接比较两地癌症发病率的高低,我们不能确定发病率较高的市,是因为年龄构成不同还是因为其他影响因素(如饮食习惯、环境等)所导致。因此,需要用“年龄标化”的统计学方法,进一步处理数据,排除年龄影响因素的干扰,再来比较两地的发病率数据。

 

以发病率为例,即把原始数据套到一个“标准年龄结构人群里”,计算出”年龄标化发病率“,这样人群结构不同的A市和B市,就能在同一个指标尺度下进行“发病率”比较。年龄标化通常有“中标率”,即我国各地基于某一年份的中国人口年龄结构构成作为标准计算,国内不同地区的疾病数据比较采用的是“中标率”;另一种是“世标率”,即用世界标准人口构成机型标化计算,适用于国与国之间的指标比较。

 

同样地,以死亡率为例,应特别注意各之间地人口构成的差异。用标准化死亡率进行比较才能得出正确结论。如甲、乙两地在未标化前的肺癌死亡率相同,但实际上乙地人群的肺癌死亡率要明显地高于甲地,其原因在于甲地男性老年人口居多,而肺癌的死亡率又与年龄和性别有关,所以用未标化率进行比较时,就会得出甲乙两地肺癌死亡率相同的错误结论。

 

参考资料:

 

张科宏教授:年龄标化的患病率 – 丁香公开课 (dxy.cn)

科学网—癌症(粗)发病率与标化发病率的区别 – 杨雷的博文 (sciencenet.cn)

WHO年龄标化死亡率定义及计算方法

沈洪兵,齐秀英. 流行病学 [M]. 人民卫生出版社. 2015.

疾病的“经济负担”怎么计算?

疾病经济负担是由于发病、伤残(失能)和过早死亡给患者本人、家庭以及社会带来的经济损失,和由于预防治疗疾病的费用。通过计算疾病的经济负担,可以从经济层面上研究或比较不同疾病对人群健康的影响。

总疾病经济负担包括直接疾病经济负担、间接疾病经济负担和无形疾病经济负担。

直接经济负担:指直接用于预防和治疗疾病的总费用,包括直接医疗经济负担和直接非医疗经济负担两部分。直接医疗经济负担是指在医药保健部门购买卫生服务的花费,主要包括门诊费(如挂号费、检查费、处置费、诊断费、急救费等)、住院费(如手术费、治疗费等)和药费等。直接非医疗经济负担包括和疾病有关的营养费、交通费、住宿费、膳食费、陪护费和财产损失等。

间接经济负担:指由于发病、伤残(失能)和过早死亡给患者本人和社会带来的有效劳动力损失而导致的经济损失。具体包括:劳动工作时间损失、个人工作能力和效率降低造成的损失、陪护病人时损失的劳动工作时间、精神损失等。

无形经济负担:指患者及亲友因疾病在心理、精神和生活上遭受的痛苦、悲哀、不便等生活质量下降而产生的无形损失。

 

参考资料:

陈文. 卫生经济学 [M]. 人民卫生出版社. 2017.

李茜瑶,周莹,黄辉等.疾病负担研究进展[J].中国公共卫生,2018,34(05):777-780.