Evaluate the Cost-effectiveness of Pneumococcal Vaccines

Evaluate the Cost-effectiveness of Pneumococcal Vaccines

The cost-effectiveness of pneumococcal vaccines varies from country to country. Several studies have found that the parameters that most influence the cost-effectiveness of vaccines are vaccine efficacy, coverage, price, disease incidence rate, mortality, treatment costs for the pneumococcal diseases, herd immunity effects and serotype replacement. In addition, the research hypothesis, model structure, disease burden, and sponsorship also could affect the outcomes of economic evaluation.

A systematic review evaluated health utility values, medical resource use, and economic costs associated with pneumococcal diseases, including the cost-effectiveness of various interventions such as vaccination programs for both adults and children.1 The review included 383 studies, 140 of which focused on the economic evaluations of pneumococcal immunization’s cost-effectiveness. The findings indicated that immunization programs in most countries are cost-effective, aligning with the objective of summarizing evidence which are critical for informing future health economic analyses.1

In the a forementioned review, cost-effectiveness of pneumococcal vaccination in adults has been evaluated, with 50 papers focusing on economic assessments of PCV vaccination. Among these papers, 25 were conducted in Europe, 17 in the United States, with two each in Colombia and Brazil, and single studies in Canada, Japan, Mainland China, and the Hong Kong Special Administrative Region.1

1) Cost-effectiveness compared with no vaccination

36 studies assessed the impact of vaccination with PPV23 versus no vaccination among adults. Economic evaluations ranged from cost-saving to an average Incremental Cost-Effectiveness Ratio (ICER) of $375,355 per Quality-Adjusted Life Year (QALY) gained based on time varying from one year to lifetime.1 9 studies analyzed PCV13 vaccination’s impacts in adults population, with results ranging from overall cost-saving to an average ICER of $325,021 per QALY gained.1 In Spain, Colombia, and Finland, PCV13 vaccination in adults over 50 was proved be cost-saving.1 2 studies in Italy and the United States evaluated the cost-effectiveness of PCV13 and PPV23 combination or sequential vaccination* compared with no vaccination in adults over time spans ranging from 5 to 50 years, with mean ICERs ranging from $29,607 to $38,384 per QALY gained. 2,3

2) Cost-effectiveness of different vaccination strategies

A 15-year U.S. study among immunocompromised adults aged 19 to 64 found that a single dose of PCV13 was the more cost-effective strategy.4 Another U.S. study indicated that replacing the original PPV23 with PCV13 for adults aged 65 and older, as well as younger populations with multiple comorbidities, was more cost-effective.5 Compared to this replacement strategy, routine PCV13 vaccination at ages 50 and 65 cost $45,100 per QALY while an additional PPV23 vaccination at age 75 yielded 0.00002 QALYs at a cost of $496,000 per QALY.5 A French study evaluated the public health and budget impact of different vaccination strategies (i.e., PPV23 for immunocompetent individuals and PCV13 for immunocompromised individuals; or PCV13 only) in high-risk adult populations suggesting that in the high-risk population group, vaccinating immunocompetent individuals with PPV23 and immunocompromised with PCV13 might provide better protection.6 However, considering the additional budget required for an additional PCV13-only strategy, PPV23 remains the preferred strategy for immunocompetent individuals.6

3) Cost-effectiveness of Different Age Groups’ PPV23 vaccination

5 studies conducted in the United States, Japan, and Brazil evaluated the effects of PPV23 in different age groups of adults. Among them, a study from the United States indicated that the vaccination strategy targeting the 50-year-old population had an advantage over the strategy targeting individuals under 65 with multiple chronic diseases in terms of health economic assessment outcomes. Compared to vaccinating only individuals aged 65, the vaccination strategy for both 65- and 80-year-old populations was more advantageous; vaccinating three age groups (50, 65, and 80 years old) was more advantageous than vaccinating two age groups (50 and 65 years old).4,7 Compared to vaccinating the entire population with influenza vaccine and administering PPV23 to adults with chronic diseases and their complications, vaccinating adults aged 50 and above with only PPV23 was more economically advantageous.8 Studies from Japan showed that, compared to vaccinating only individuals aged 65 with PPV23, vaccinating both 65- and 80-year-old individuals with the vaccine was more economically advantageous.9 Research from Brazil demonstrated that universal vaccination of PPV23 for individuals over 60 years old is a highly cost-effective strategy, with the ICER values ranging from $970 to $1,392 per additional life-year gained(LYG).

A total of 90 studies on the cost-effectiveness of pneumococcal vaccination in children were included in the aforementioned review.1 39 studies were conducted in Europe, 19 in Asia, 13 in North America, 24 in South America, three in Australia, and seven in Africa, with some studies covering multiple countries.

1) Cost-effectiveness compared with no vaccination

PCV7 vaccination versus no vaccination: In Finland, PCV7 was considered not cost-effective.10 The ICER was $143 per Disability-Adjusted Life Year (DALY) averted in resource-limited settings; in Singapore, it was $47,392. In Canada, the ICER ranged from $456 to $266,333 per QALY averted.11 In Germany, the ICER was $242 per LYG.12

PCV10 vaccination versus no vaccination: 23 countries’ studies analyzed the cost-effectiveness of PCV10 vaccination compared to no vaccination, with studies from Canada, Colombia, and Chile all showing that PCV10 vaccination is cost-effective.1 The average ICER ranged from $65 per QALY averted in Kenya to $70,066 in Croatia1.Additionally, studies indicated that PCV10 has moderate cost-effectiveness in Singapore and is not cost-effective in Thailand.13,14

PCV13 vaccination versus no vaccination: 22 countries conducted economic evaluations of PCV13 vaccination in children. The ICER ranged from $51 per QALY averted in Kenya to $71,371 in Croatia; from $3,147 per QALY averted in the Philippines to $288,222 in the United Kingdom.1 Studies from China and Thailand showed that introducing PCV13 into the NIP is not cost-effective.14,15

2) Cost-effectiveness of different valences of PCV vaccines

18 countries’ studies compared the cost-effectiveness of PCV10 and PCV13 vaccinations. Studies indicated that PCV13 is more cost-effective in Germany, Greece, the Netherlands, Colombia, Canada, Sweden, Denmark, and Malaysia, while analyses in Peru, Norway, the United Kingdom, Hong Kong, and Turkey showed that PCV10 is more cost-effective.1

A review study summarized the economic evaluations of three types of pneumococcal vaccines for children (PCV7, PCV10, PCV13) from 2006 to 2014, including 63 documents.16 The study concluded that, based on the review, PCV13 and PCV10 may be more cost-effective than PCV7. However, due to uncertainties regarding serotype replacement and herd effects, serotype cross-protection, and protection against incidental acute otitis media (AOM) caused by nontypeable Haemophilus influenzae (NTHi), the evidence for which vaccine is more cost-effective is not clear.16

The Cost-effectiveness in children and adults in low- and middle-income countries is influenced by the significant price variability of PCVs. Achieving higher cost-effectiveness is contingent upon reducing vaccine prices. A model study estimated the total global cost of PCV vaccination to be $15.5 billion. In North America, the average cost per fully vaccinated child is $541, with the total vaccination cost in Europe being higher at $599, Asia at $104, and Africa at $52. Comparatively, Africa incurs fewer costs due to funding from the Global Alliance for Vaccines and Immunization (Gavi). The 71 countries receiving Gavi support account for 83% of the deaths preventable by PCV13, yet their costs represent only 18% of the global vaccination expenses.17

Pneumococcal vaccination for infants and young children in low- and middle-income countries is cost-effective. A study including 72 developing countries estimated that PCV vaccination could prevent 262,000 deaths annually among children aged 3 to 29 months, thereby averting 8.34 million DALYs annually. If every child were vaccinated, up to 407,000 deaths could be prevented annually. With an international vaccine price of $5 per dose, the net cost of vaccination would be $838 million, with a cost-effectiveness $100 per DALY averted. Based on each country’s Gross Domestic Product (GDP) per capita and the cost per DALY averted, it is projected that 68 out of the 72 countries included in the study would find vaccination at this price highly cost-effective.18

A systematic study on the cost-effectiveness of PCV vaccination for adults aged 50 and above in low- and middle-income countries indicates that vaccinating the elderly with either PPV23 or PCV13 is economically advantageous, with most cases resulting in cost savings and high cost-effectiveness.18

Table 1: Comparing cost-effectiveness of PCV13 vaccination versus no vaccination for adults aged 50 and above in LMICs

A systematic review of the economic evaluation of different immunization strategies for PCV in China showed that out of 13 studies included, 10 indicated that incorporating PCV into national or regional immunization programs is economically beneficial, preventing a substantial number of pneumococcal-related deaths in children under 5 and generating significant societal costs savings.19 Some studies also suggest that incorporating PPV23 into the immunization program has a higher cost-effectiveness than incorporating PCV.19 Another study showed that, assuming a base price of $25 per dose in the NIP, introducing PCV13 nationwide is cost-effective, with an ICER of $5,222 per additional QALY gained. Compared to providing PCV13 solely through private market, incorporating PCV13 into the childhood immunization schedule is cost-effective in 17 out of 31 provinces in the country, with 4 provinces achieving cost savings.20

For the adult pneumococcal vaccination, studies conducted in some cities show that vaccinating the elderly with PPV23 is cost-effective. A modeling study conducted among elderly people over 60 years old in Shanghai found that PPV23 vaccination could reduce the cumulative incidence of community-acquired pneumonia (CAP), invasive pneumococcal disease (IPD), and hospitalization by 3.57%, 0.02%, and 1.06%, respectively, with an ICER of $16,700 per QALY, and the return on investment for the PPV23 strategy approaching 90%.21 A cost-effectiveness analysis of PPV23 vaccination in the elderly in Beijing showed that the higher the vaccine price, the lower the benefit-cost ratio (BCR), and that a better cost-effectiveness can be achieved by reducing the vaccine price.22 Furthermore, the analysis indicated that a favorable benefit-cost ratio (BCR) could be achieved as long as the disease incidence remains above 3.87 cases per 100 person-years.22

A study comparing different pneumococcal vaccination strategies among individuals over 65 years old showed that compared to no vaccination, the ICERs for PPV23, PCV13, and sequential PCV13-PPV23 vaccination strategies were $10,776.7/QALY, $9,193.2/QALY, and $15,080.0/QALY.23 Based on a one-time national per capita GDP threshold, PCV13 alone emerged as the most cost-effective option and the only strategy meeting the national per capita GDP threshold for cost-effectiveness. Furthermore, the cost of the PPV23 vaccination strategy is the lowest, while the sequential PCV13-PPV23 vaccination strategy has the most significant impact on reducing the burden of pneumococcal disease.23


Content Editor: Menglu Jiang, Ziqi Liu

Page Editor: Ziqi Liu


Glossary

Sequential Vaccination refers to the administration of vaccines with different technological platforms at specified intervals. In the context of this article, sequential vaccination refers to the initial administration of one type of pneumococcal vaccine (e.g., PCV13) followed by another type of pneumococcal vaccine (e.g., PPV23). This vaccination strategy aims to provide more comprehensive protection by leveraging the advantages of different vaccines to cover a broader range of pneumococcal serotypes, thereby enhancing overall immunogenicity.


References

1. Shiri, T., Khan, K., Keaney, K., Mukherjee, G., McCarthy, N. D., & Petrou, S. (2019). Pneumococcal disease: a systematic review of health utilities, resource use, costs, and economic evaluations of interventions. Value in Health, 22(11), 1329-1344.

2. S. Boccalini, A. Bechini, M. Levi, et al. Cost-effectiveness of new adult pneumococcal vaccination strategies in Italy Hum Vaccin Immunother, 9 (2013), pp. 699-706

3. J. Chen, M.A. O’Brien, H.K. Yang, et al. Cost-effectiveness of pneumococcal vaccines for adults in the United States Adv Ther, 31 (2014), pp. 392-409

4. K.J. Smith, M.P. Nowalk, M. Raymund, et al. Cost-effectiveness of pneumococcal conjugate vaccination in immunocompromised adults. Vaccine, 31 (2013), pp. 3950-3956

5. K.J. Smith, A.R. Wateska, M.P. Nowalk, et al. Cost-effectiveness of adult vaccination strategies using pneumococcal conjugate vaccine compared with pneumococcal polysaccharide vaccine. JAMA, 307 (2012), pp. 804-812

6. Y. Jiang, F. Gervais, A. Gauthier, et al. A comparative public health and budget impact analysis of pneumococcal vaccines: the French case. Hum Vaccin Immunother, 11 (2015), pp. 2188-2197

7. K.J. Smith, R.K. Zimmerman, C.J.Lin, et al. Alternative strategies for adult pneumococcal polysaccharide vaccination: a cost-effectiveness analysis Vaccine, 26 (2008), pp. 1420-1431

8. K.J. Smith, B.Y. Lee, M.P. Nowalk, et al. Cost-effectiveness of dual influenza and pneumococcal vaccination in 50-year-olds Vaccine, 28 (2010), pp. 7620-7625

9. S.L. Hoshi, M. Kondo, I. Okubo Economic evaluation of immunisation programme of 23-valent pneumococcal polysaccharide vaccine and the inclusion of 13-valent pneumococcal conjugate vaccine in the list for single-dose subsidy to the elderly in Japan PLoS One, 10 (2015), p. e0139140

10. H. Salo, H. Sintonen, J.P. Nuorti, et al. Economic evaluation of pneumococcal conjugate vaccination in Finland Scand J Infect Dis, 37 (2005), pp. 821-832

11. B. Poirier, P. De Wals, G. Petit, et al. Cost-effectiveness of a 3-dose pneumococcal conjugate vaccine program in the province of Quebec, Canada Vaccine, 27 (2009), pp. 7105-7109

12. A. Lloyd, N. Patel, D.A. Scott, et al. Cost-effectiveness of heptavalent conjugate pneumococcal vaccine (Prevenar) in Germany: considering a high-risk population and herd immunity effects Eur J Health Econ, 9 (2008), pp. 7-15

13. K.R. Tyo, M.M. Rosen, W. Zeng, et al. Cost-effectiveness of conjugate pneumococcal vaccination in Singapore: comparing estimates for 7-valent, 10-valent, and 13-valent vaccines Vaccine, 29 (2011), pp. 6686-6894

14. W. Kulpeng, P. Leelahavarong, W. Rattanavipapong, et al. Cost-utility analysis of 10- and 13-valent pneumococcal conjugate vaccines: protection at what price in the Thai context? Vaccine, 31 (2013), pp. 2839-2847

15. X. Mo, R. Gai Tobe, X. Liu, et al. Cost-effectiveness and health benefits of pediatric 23-valent pneumococcal polysaccharide vaccine, 7-valent pneumococcal conjugate vaccine and forecasting 13-valent pneumococcal conjugate vaccine in China Pediatr Infect Dis J, 35 (2016), pp. e353-e361

16. Wu DB, Chaiyakunapruk N, Chong HY, Beutels P. Choosing between 7-, 10- and 13-valent pneumococcal conjugate vaccines in childhood: a review of economic evaluations (2006-2014). Vaccine. 2015 Mar 30;33(14):1633-58. doi: 10.1016/j.vaccine.2015.01.081. Epub 2015 Feb 11. PMID: 25681663.

17. Chen C, Cervero Liceras F, Flasche S, Sidharta S, Yoong J, Sundaram N, Jit M. Effect and cost-effectiveness of pneumococcal conjugate vaccination: a global modelling analysis. Lancet Glob Health. 2019 Jan;7(1):e58-e67. doi: 10.1016/S2214-109X(18)30422-4.

18. Saokaew, S., Rayanakorn, A., Wu, D. B.-C., & Chaiyakunapruk, N. (2016). Cost Effectiveness of Pneumococcal Vaccination in Children in Low- and Middle-Income Countries: A Systematic Review. PharmacoEconomics, 34(12), 1211-1225.

19. Zhang, H., Lai, X., Lü, Y., Feng, H., Wang, J., Guo, J., Zhang, H., & Fang, H. (2022). A systematic review of economic evaluations on different pneumococcal conjugate vaccine immunization strategies in China. Chinese Health Economics, 41(2), 9–14

20. Lai, X., Garcia, C., Wu, D., Knoll, M. D., Zhang, H., Xu, T., Jing, R., Yin, Z., Wahl, B., & Fang, H. (2023). Estimating national, regional and provincial cost-effectiveness of introducing childhood 13-valent pneumococcal conjugate vaccination in China: A modelling analysis. The Lancet Regional Health – Western Pacific, 32, 100666. https://doi.org/10.1016/j.lanwpc.2022.100666 

21. Sun X, Tang Y, Ma X, et al. Cost-Effectiveness Analysis of 23-Valent Pneumococcal Polysaccharide Vaccine Program for the Elderly Aged 60 Years or Older in Shanghai, China. Front Public Health. 2021 May 24; 9:647725.

22. Liu, J., Ji, W., & Wu, J. (2011). Cost-effectiveness analysis of pneumococcal polysaccharide vaccination among the elderly in Beijing. Chinese Journal of Public Health, 27(2), 191–193.

23. Guo, J., Zhang, H., Zhang, H., Lai, X., Wang, J., Feng, H., & Fang, H. (2023). Cost-effectiveness of pneumococcal vaccines among adults aged 65 years and older in China: A comparative study. Vaccine, 41(3), 716–723. https://doi.org/10.1016/j.vaccine.2022.12.004

代表性地区的基本情况、接种政策及效果、宣传推动情况

(1) 成都市

 

基本情况

成都市2022年度GDP为20817.5亿元,排名全国城市第七。成都市出台了《健康城市建设推动健康中国行动创新模式成都市宫颈癌综合防控试点工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为13-14岁在校且无HPV疫苗接种史女生。免疫程序为国产二价0-6二剂次、进口二价0-1-6三剂次、进口四价0-2-6三剂次。资助政策为国产二价疫苗(沃泽惠)免费,其它疫苗补贴600元/人,并自付20元/剂接种费。疫苗接种按照属地化管理原则,由学校所在地预防接种单位负责。截至2022年1月,目标人群首针接种率达90.04%[14]。

宣传推动

成都市开展多形式、多载体的健康教育宣传。形式包括讲座、知晓日、义诊咨询、专题课程、专题活动等,载体包括宣传册、宣传栏、展板、电视、微信、视频号、抖音平台等,覆盖相关医疗机构300余、社区300余个、和公众场所90余个。面向适龄女孩及监护人、适龄女性及全体市民开展广泛宣教,宣传材料发放至近9万名群众,讲座活动覆盖近2万名群众。宣教内容包括HPV疫苗接种、两癌防控、其它女性常见疾病防控等。

(2) 济南市

 

基本情况

济南市2022年度GDP为12027.5亿元,位列全国城市排名20。2021年,济南市出台《健康城市建设推动健康中国行动创新模式试点一济南市宫颈癌综合防治工作方案(2021—2025年)》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为≤14周岁且无HPV疫苗接种史的在校七年级女生。免疫程序为国产二价0-6二剂次。资助政策免费接种。疫苗接种按照属地化管理原则,安排分班级分时段前往学校所在地的预防接种单位进行接种。截至2022年11月,目标人群首针接种率达
94.4%[15].

宣传推动

济南市开展多形式、多载体的健康教育宣传。形式包括采访、线上线下专题活动,载体包括网络媒体、纸媒、科普展板、宣传手册、子宫颈癌与HPV疫苗知识读本、济南HPV疫苗接种手册,宣教人群广泛涵盖全体市民,宣教内容包括HPV疫苗接种、两癌防控等知识。

(3) 鄂尔多斯市

 

基本情况

鄂尔多斯市2022年度GDP为5613.44亿元,全国地级市第45位。2021年,鄂尔多斯市出台了《健康城市建设推动健康鄂尔多斯行动创新模式工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

2020年8月,鄂尔多斯市在准格尔旗率先开展HPV疫苗免费接种项目。目标人群为全市当年13-18岁在校且无HPV疫苗接种史女生。免疫程序为进口二价0-1-6三剂次,

2023年起调整为13-14岁女孩0-6二剂次。资助政策为疫苗免费,自付20元/剂接种费。组织方式为疫苗接种服务中心根据任务安排联系学校,有规划的通知适龄女孩前来完成HPV疫苗接种。截至2022年11月,目标人群首针接种率接近70%[16]。

2022年8月,启动准格尔旗和达拉特旗高三女生接种四价和九价HPV疫苗的试点工作,利用暑假时间展开接种,力争在2023年年底达成90%的接种目标[17]。自鄂尔多斯之后,由政府主导的HPV疫苗惠民行动在多地等涌现。值得注意的是,近年来多主体参与到HPV疫苗支持项目,如慈善总会、医院、妇联等为主体单位牵头组织开展了一些公益活动。

宣传推动

鄂尔多斯市开展多形式、多载体的健康教育宣传。形式包括讲座、知晓日、义诊咨询、专题课程、专题活动等,载体包括宣传册、宣传栏、展板、电视、微信、视频号、抖音平台等,宣教人群广泛涵盖在校女孩及监护人,适龄女性及全体市民。宣教内容包括HPV疫苗接种、两癌防控、其它女性常见疾病防控等。

(4) 西安市

 

基本情况

西安市2022年度GDP为11486.51亿元,排名全国第22位。2021年,西安市出台了《西安市健康城市建设推动健康中国行动创新模式试点宫颈癌综合防治工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为全市年龄满13周岁(初中)在校女生。免疫程序为国产二价0-6二剂次,进口二价0-1-6三剂次,进口四价和进口九价0-2-6三剂次。接种政策为自愿自费。各区(县)合理设立HPV疫苗专项疫苗接种门诊承担接种任务,并及时将接种信息统一录入儿童免疫规划信息平台。

宣传推动

西安市出台了《西安市宫颈癌综合防治宣传方案》(市健办发〔2022〕12号)。通过媒体宣传、社区活动、义诊等形式,宣传册、宣传栏、展板、电视、微信公众号、报纸等载体普及宫颈癌防治相关知识。

(5) 西藏自治区

 

基本情况

西藏自治区2022年度GDP为2132.64亿元,经济总量整体规模相对其他省份较小,人均GDP处于全国中等偏下水平。2022年出台《西藏自治区妇女“两癌”综合防治工作实施方案》等系列政策推动适龄女孩HPV疫苗接种。

接种政策及效果

目标人群为13-14岁在校女生。免疫程序为国产二价0-6二剂次。资助政策为免费。由学校组织,接种者在商定接种时间携带个人身份证明材料与法定监护人一同前往定点接种单位接种。

宣传推动

充分利用网络、电视、广播、报刊等媒介,以群众喜闻乐见的宣传方式,对适龄在校女生HPV疫苗接种工作的意义及内容进行广泛宣传。

近年来各地HPV疫苗惠民项目信息

“疾病负担”指标解读

疾病负担(burden of disease, BOD)是指疾病造成的失能(伤残)、生活质量下降和过早死亡对健康和社会造成的总损失,包括疾病的流行病学负担和经济负担两个方面。

 

在疾病的流行病学方面,衡量疾病负担的常用指标包括传统指标和综合指标。

 

传统指标

传统疾病负担的衡量指标包括:用于描述和反映健康状况与水平的常规指标,如死亡人数、伤残人数和患病人数等绝对数指标;以及用来比较不同特征人群疾病分布差异的指标,如发病率、伤残率、患病率、死亡率、门诊和住院率等相对数指标。

 

上述传统疾病负担的衡量指标基本上只考虑了人口的生存数量,而忽略了生存质量,不够全面;但优势在于资料相对计算方便,结果直观,可用于各种疾病的一般性描述。

 

综合指标

疾病负担不等同于死亡人数,综合指标弥补了传统指标的单一性,且可以让各种不同疾病造成的负担之间相互比较。

 

潜在寿命损失年(YPLL):通过疾病造成的寿命损失来估计疾病负担的大小。但忽略了疾病造成的失能对生存质量的影响。

 

伤残调整寿命年(DALYs):将死亡和失能相结合,用一个指标来描述疾病的这两方面的负担。它包括因早死造成健康生命年的损失(YLL)和因伤残造成健康生命年的损失(YLD),即DALY=YLL+YLD。目前,DALY是国内外一致公认的最具代表性、运用最多的疾病负担评价指标。

 

健康期望寿命(HALE):指具有良好健康状态的生命年以及个体在比较舒适的状态下生活的平均预期时间,综合考虑生命的质量和数量两方面。

 

 

随着疾病负担研究的深入,其测量范围从流行病学负担扩大到经济负担。

 

疾病经济负担是由于发病、伤残(失能)和过早死亡给患者本人、家庭以及社会带来的经济损失,和由于预防治疗疾病所消耗的经济资源。

详细见:疾病的“经济负担”怎么计算?

 

参考资料:

陈文. 卫生经济学 [M]. 人民卫生出版社. 2017.

李茜瑶,周莹,黄辉等.疾病负担研究进展[J].中国公共卫生,2018,34(05):777-780.

什么是“年龄标化”?

在流行病学研究中,年龄是多种疾病的危险因素。以发病率为例,该指标反映了一定时期内,特定人群中癌症新发病例的情况。由于年龄是癌症发生的一个重要影响因素,年龄越大,发病率就越高。

 

如果两个国家的人群年龄结构相差很大,例如A市老年人口比例更大,B市年轻人口占比更高,直接比较两地癌症发病率的高低,我们不能确定发病率较高的市,是因为年龄构成不同还是因为其他影响因素(如饮食习惯、环境等)所导致。因此,需要用“年龄标化”的统计学方法,进一步处理数据,排除年龄影响因素的干扰,再来比较两地的发病率数据。

 

以发病率为例,即把原始数据套到一个“标准年龄结构人群里”,计算出”年龄标化发病率“,这样人群结构不同的A市和B市,就能在同一个指标尺度下进行“发病率”比较。年龄标化通常有“中标率”,即我国各地基于某一年份的中国人口年龄结构构成作为标准计算,国内不同地区的疾病数据比较采用的是“中标率”;另一种是“世标率”,即用世界标准人口构成机型标化计算,适用于国与国之间的指标比较。

 

同样地,以死亡率为例,应特别注意各之间地人口构成的差异。用标准化死亡率进行比较才能得出正确结论。如甲、乙两地在未标化前的肺癌死亡率相同,但实际上乙地人群的肺癌死亡率要明显地高于甲地,其原因在于甲地男性老年人口居多,而肺癌的死亡率又与年龄和性别有关,所以用未标化率进行比较时,就会得出甲乙两地肺癌死亡率相同的错误结论。

 

参考资料:

 

张科宏教授:年龄标化的患病率 – 丁香公开课 (dxy.cn)

科学网—癌症(粗)发病率与标化发病率的区别 – 杨雷的博文 (sciencenet.cn)

WHO年龄标化死亡率定义及计算方法

沈洪兵,齐秀英. 流行病学 [M]. 人民卫生出版社. 2015.

疾病的“经济负担”怎么计算?

疾病经济负担是由于发病、伤残(失能)和过早死亡给患者本人、家庭以及社会带来的经济损失,和由于预防治疗疾病的费用。通过计算疾病的经济负担,可以从经济层面上研究或比较不同疾病对人群健康的影响。

总疾病经济负担包括直接疾病经济负担、间接疾病经济负担和无形疾病经济负担。

直接经济负担:指直接用于预防和治疗疾病的总费用,包括直接医疗经济负担和直接非医疗经济负担两部分。直接医疗经济负担是指在医药保健部门购买卫生服务的花费,主要包括门诊费(如挂号费、检查费、处置费、诊断费、急救费等)、住院费(如手术费、治疗费等)和药费等。直接非医疗经济负担包括和疾病有关的营养费、交通费、住宿费、膳食费、陪护费和财产损失等。

间接经济负担:指由于发病、伤残(失能)和过早死亡给患者本人和社会带来的有效劳动力损失而导致的经济损失。具体包括:劳动工作时间损失、个人工作能力和效率降低造成的损失、陪护病人时损失的劳动工作时间、精神损失等。

无形经济负担:指患者及亲友因疾病在心理、精神和生活上遭受的痛苦、悲哀、不便等生活质量下降而产生的无形损失。

 

参考资料:

陈文. 卫生经济学 [M]. 人民卫生出版社. 2017.

李茜瑶,周莹,黄辉等.疾病负担研究进展[J].中国公共卫生,2018,34(05):777-780.