Disease Burden in China

Disease Burden in China

Pneumococcal diseases (PDs) are not listed as a notifiable infectious diseases in China, and there is a lack of dedicated surveillance systems specifically for PDs . Existing platforms such as disease information reporting system and cause-of-death registration system are unable to effectively capture high-quality epidemiological characteristics on PDs, including incidence, prevalence, and case fatality rates.

Currently, most available data on the epidemiological patterns and disease burden of PDs in China are derived from localized, community-based or hospital-based studies. There remains a lack of nationally representative, population-wide, high-quality data on pneumococcal disease burden. In 2022, Chinese scholars published a model study in The Lancet 1, estimating the pneumococcal disease burden for children in all provinces of China from 2010 to 2017. Ning Guijun2 and Yao Kaihu3 provided comprehensive overviews of pneumococcal disease burden in China in 2018 and 2020, respectively. Additionally, the 2020 Expert Consensus on Immunoprophylaxis for PD⁴  also addressed  the burden of pneumococcal disease in China.

Cross-sectional surveys conducted in various countries have shown that the prevalence of nasopharyngeal Streptococcus pneumoniae carriage in infants and children ranges from 27% to 85%4. According to studies conducted from 1997-2004, the isolation rate of S. pneumoniae from nasopharyngeal swabs in Chinese children <5 years old who were healthy or had upper respiratory tract infections could range from 5.1% to 40.5%5. A 2018 survey using molecular biology testing methods found that S. pneumoniae colonization in healthy children aged 6-10 years old in Xinjiang Uygur Autonomous Region was as high as 88.6% 6. A meta-analysis showed that from 1997 to 2014, the nasopharyngeal carriage rate of S. pneumoniae in Chinese children was about 21.4%, with the highest rates observed in kindergarten children. The nasopharyngeal carriage rate of S. pneumoniae decreased with the increase of age. Additionally, before the introduction of PCV7 in China, the nasopharyngeal carriage rate of S. pneumoniae in children was 25.8%, which decreased to 14.1% after the introduction of PCV7.7

A 2022 cross-sectional survey conducted in Hainan Province reported that 30.4% of children carried S. pneumoniae. Compared to unvaccinated children, those who had received the PCV13 vaccine had a significantly lower carriage rate, at about 17.7%. Higher carriage rates were observed in children attending daycare, those living in rural areas, those with siblings, and those whose mothers had an education level of high school or vocational school. In contrast, children who had completed 3–4 doses of PCV13 showed significantly lower nasopharyngeal S. pneumoniae carriage rates.⁸

A systematic review reported that from 1980 to 2008, the incidence of all-cause pneumonia among children under 5 years of age in China was 12,815 per 100,000 person-years (range: 8,625–18,623 per 100,000 person-years), and the mortality rate was 526 per 100,000 person-years (range: 262–1,053 per 100,000 person-years). It was estimated that in the year 2000, there were approximately 260,768 cases of pneumococcal pneumonia and 902 cases of pneumococcal meningitis, with 10,703 deaths from pneumococcal pneumonia and 75 deaths from pneumococcal meningitis, respectively (Table 1) ⁹.

Table 1 Mortality, morbidity and case-fatality rate due to pneumonia, meningitis and bacteremia, China, 1980-2008a

DiseaseMorbidityMortality Case-fatality
Rate (nb )95% CIRate (n)95% CI Rate (n)95% CI
Pneumonia by year (n = 12)
1980-19896,935.6(3)4,775.66-9,444.9520.2(3)479.9 – 1,565.6c2.0-1.0c1.4(2)
1990-199914,210.9(8)8,663.1 – 22,438.6551.4(8)237.8 – 1,273.71.4- 0.9c1.3(2)
Overall12,815(10)8,625 – 18,623526(10)262 – 1,0530.7 – 2.51.4(4)
Pneumonia by region (n = 10)
Eastern provinces18,807.0(3)12,909.1 – 22,701.8c577.9(3)71.2 – 700.8
Central provinces8,370.6(4)d3,323.2-19,535.2623.8(3)151.6 – 1,158.11.4(1)
Western provinces18,347.9(2)17,700.1c– 19,377.8574.9(2)178.1- 1,469.90.9(1)
Meningitis (n = 4)
Total14(2)8.9- 19.2c2.5c– 9.18.3(3)

a Mortality and morbidity were expressed as 1/100,000/year; case-fatality rate was expressed as percentages.
b n represents the number of articles.
c Numbers presented are from the original publication.
d Compared to Eastern and Western province, poisson regression, p<0.05

A global study on the burden of PD, about 1.74 million children under the age of 5 suffered from PD in China in 2000, accounting for 12% of global cases10. The World Health Organization (WHO) estimated that in 2015, China had more than 210,000 severe cases of PD among children under the age of 5, resulting in approximately 7,000 deaths. Nearly 200,000 of these were severe pneumococcal pneumonia cases, with a case fatality rate of 1% and a mortality rate of 6.43 per 100,00011. A model study published in The Lancet in 2022 indicated that in 2017, there were approximately 218,200 severe cases and around 8,000 deaths due to pneumococcal infection among children under 5 in China1.

A study conducted in Suzhou City, Jiangsu Province, China, between January 2010 and December 2017 12, collected 20,260 cerebrospinal fluid specimens from children under 5 years of age, and found that:

1) Among the 283 samples that tested positive for bacteria, 46 samples (46/283, 16.3%) tested positive for Streptococcus pneumoniae, making it the second most common bacterial infection.

2) Common diagnoses among children under 5 years old with invasive pneumococcal disease (IPD) included meningitis (31.4%), pneumonia (28.6%), and sepsis (21.0%) (Table 2).

3) The estimated annual hospitalization incidence rate for IPD in children under 5 years old in Suzhou was between 8.16 and 17.86 per 100,000, peaking in 2015. The IPD hospitalization incidence rate varied among different age groups, with the highest rate in children under 1 year old (21.78 per 100,000). The hospitalization incidence rates of pneumococcal meningitis, bacterial pneumonia, and sepsis among children under 5 were 4.57 per 100,000 (95% CI: 3.26–6.42), 4.16 per 100,000 (95% CI: 2.91–5.93), and 3.05 per 100,000 (95% CI: 2.01–4.62), respectively (Table 3).

Table 2 Characteristics of Invasive Pneumococcal Disease in Children in Suzhou, China, 2010 – 2017

CharacteristicAge Group, no. (%)
<1 y1-<2 y 2-<5 y Total
Total31 (100.0)17 (100.0)57 (100.0)105 (100.0)
Sex
Male17 (54.8)10 (58.8)33 (57.9)60 (57.1)
Female14 (45.2)7 (41.2)24 (42.1)45 (42.9)
Year
20105 (16.1)1 (5.9)4 (7.0)10 (9.5)
20114 (12.9)4 (23.5)3 (5.3)11 (10.5)
20124 (12.9)1 (5.9)5 (8.8)10 (9.5)
20135 (16.1)4 (23.5)4 (7.0)13 (12.4)
20144 (12.9)4 (23.5)9 (15.8)17 (16.2)
20155 (16.1)1 (5.9)12 (21.1)18 (17.1)
20162 (6.5)1 (5.9)6 (10.5)9 (8.6)
20172 (6.5)1 (5.9)14 (24.6)17 (16.2)
Primary discharge diagnosis
Meningitis16 (51.6)4 (23.5)13 (22.8)33 (31.4)
Pneumonia7 (22.6)3 (17.6)20 (35.1)30 (28.6)
Sepsis6 (19.4)6 (35.3)10 (17.5)22 (21.0)
Upper respiratory infection1 (3.2)1 (5.9)1 (1.8)3 (2.9)
Bronchitis01 (5.9)1 (1.8)2 (1.9)
Other*1 (3.2)2 (11.8)12 (21.1)15 (14.3)

*Other discharge diagnoses: leukemia (6), anemia (1), endocarditis (2), arrhythmia (2), acute otitis media (1), jaundice (1), acute gastritis (1), lumar muscle abscess (1).

Table 3 Estimated Hospitalization Incidence Rate of Invasive Pneumococcal Disease in Children Under 5 Years Old in Suzhou, China from 2010 to 2017

YearChildren <1 y of ageChildren 1–<2 y of ageChildren 2–<5 y of age
 IPD cases at SCHPopulationHospitalization incidence* (95% CI)IPD cases at SCHPopulationHospitalization incidence* (95% CI)IPD cases at SCHPopulationHospitalization incidence* (95% CI)
2010521,51034.33
(14.67-80.35)
119,4337.60
(1.34-43.02)
449,81311.86
(4.61-30.51)
2011422,73125.99
(10.11-66.81)
420,13629.34
(11.41-75.43)
350,5278.77
(2.98-25.79)
2012426,45222.35
(8.69-57.46)
125,4835.80
(1.02-32.83)
570,42310.49
(4.48-25.54)
2013523,89330.91
(13.20-72.35)
431,22818.92
(7.36-48.65)
476,0417.77
(3.02-19.98)
2014429,11020.30
(7.89-52.18)
428,00621.10
(8.21-54.26)
987,75215.15
(7.97-28.79)
2015522,74532.48 (13.87-76.02)134,1194.33
(0.76-24.53)
1292,03819.26
(11.02-33.66)
2016232,3609.13
(2.5-33.28)
127,7685.32
(0.94-30.13)
6102,8188.62
(3.95-18.80)
2017  2  31,415  9.40
(2.58-34.28)
1  38,255  3.86
(0.68-21.88)
14  102,006  20.27
(12.07-34.02)
Total31210,21621.78
(15.34-30.91)
17224,42811.19
(6.99-17.92)
57631,41813.33
(10.29-17.27)

* Incidence rate is cases/100,000 children.
SCH, Suzhou University Affiliated Children Hospital.

A study conducted in 2016 across 10 children’s hospitals in mainland China found that PD primarily affects children under 5 years old (85.1%), with those under 2 years old accounting for 50.3% (Figure 1A). The monthly incidence of PD is relatively stable but shows two peak periods: March (9.18%) and from November to January of the following year (11.25%, 12.85%, and 9.75%, respectively)13 (Figure 1B) .

Figure 1B Age and Seasonal Distribution of Pneumococcal Disease at 10 Children’s Hospitals in Mainland China in 2016

One study estimated the number of pneumococcal pneumonia cases among children under 5 years old in China decreased from 633,400 cases in 2010 to 553,000 cases in 20171. Guangdong Province reported the highest number of pneumococcal pneumonia cases in this age group, with around 66,500 cases, while the Tibet Autonomous Region had the highest incidence rate, reaching 1,003 cases per 100,000 children under 5 years old (Table 4). 

Table 4  Streptococcus pneumoniae cases in Chinese children aged 1–59 months in 2017

ProvinceStreptococcus pneumoniae pneumonia casesStreptococcus pneumoniae severe pneumonia casesStreptococcus pneumoniae meningitis casesStreptococcus pneumoniae severe NPNM cases
NumberRateNumberRateNumberRateNumberRate
Anhui23379 (20172-27791)6058572 (6422-9777)222293 (181-393)8333 (206-446)9
Beijing7600 (6558-9035)8122787 (2088-3178)29839 (24-53)445 (28-60)5
Chongqing11714 (10107-13925)7144295 (3218-4899)26298 (61-132)6111 (69-150)7
Fujian14825 (12791-17622)5985435 (4072-6199)219141 (87-189)6160 (99-215)6
Gansu10968 (9463-13038)7454021 (3013-4587)273310 (192-417)21353 (218-473)24
Guangdong66523 (67398-79077)88524390 (18273-27819)324542 (335-727)7615 (381-826)8
Guangxi24189  (20870-28753)6018868 (6644-10115)220238 (147-319)6270 (167-362)7
Guizhou15883 (13704-18880)5625823  (4363-6642)206137 (85-184)5156 (96-209)6
Hainan4410 (3805-5243)6691617 (1211-1844)24587 (54-117)1399 (61-133)15
Hebei34605  (29858-41135)66912687 (9505-14471)245831 (515-1116)16944 (584-1267)18
Heilongjiang9173 (7914-10904)8353363  (2520-3836)306144 (89-193)13163 (101-219)15
Henan36801 (31753-43746)49613493 (10109-15390)182604 (374-810)8686 (424-920)9
Hubei18328 (15813-21786)5686720 (5034-7664)208122 (76-164)4139 (86-186)4
Hunan23108 (19938-27469)5218472 (6347-9663)191119 (74-160)3135 (84-181)3
Inner Mongolia8772 (7569-10427)8353216 (2409-3668)306193 (119-258)18219 (135-293)21
Jiangsu23698 (20447-28170)6198688 (6509-9910)227107 (66-144)3122 (75-163)3
Jiangxi19089 (16471-22692)6116999 (5243-7983)224458 (284-615)15521 (322-699)17
Jilin8762 (7560-10416)9183213 (2407-3664)336166 (103-223)17189 (117-254)20
Liaoning12264 (10582-14579)8724497 (3369-5129)32060 (37-81)469 (42-92)5
Ningxia3103 (2678-3689)6881138  (852-1298)25266 (41-89)1575 (47-101)17
Qinghai2968 (2561-3528)7881088  (815-1241)289118 (73-159)31134 (83-180)36
Shaanxi13118  (11319-15594)6564810  (3603-5486)240353 (218-473)18401 (248-538)20
Shandong31314 (27019-37224)51511481  (8601-13095)189242 (150-324)4274 (170-368)5
Shanghai7853 (6776-9335)8222879 (2157-3284)30144 (27-60)550 (31-68)5
Shanxi12895 (11126-15329)6984728  (3542-5392)256304 (188-408)16345 (214-463)19
Sichuan35875 (30954-42645)86313153 (9854-15002)316403 (250-541)10458 (284-615)11
Tianjin4743 (4092-5638)8231739 (1303-1983)30243 (27-58)749 (30-65)8
Tibet2738 (2362-3255)10031004 (752-1145)36833 (18-53)1237 (20-60)14
Xinjiang14296 (12335-16994)7035241 (3927-5978)258291 (222-481)14330 (252-546)16
Yunnan27765 (23956-33005)97610180 (7626-11611)358491 (304-659)17558 (345-749)20
Zhejiang22278 (19222-26482)8298168 (6119-9316)304146 (90-195)5165 (102-222)6
Central190550 (164411-226510)59969862 (52340-79684)2203129 (1936-4198)103554 (2199-4768)11
East191099 (164884-227163)72270063 (52491-79914)2651364 (844-1831)51550 (959-2079)6
West171388 (147877-203732)74062837 (47077-71671)2712731 (1729-3764)123102 (1964-4275)13
Nationwide553037 (477172-657405)679202762 (151908-231270)2497225 (4510-9793)98206 (5123-11123)10

All Streptococcus pneumoniae meningitis cases are severe.
Rate per 100 000

An epidemiological study conducted in Nanning, Guangxi, between 2000 and 2002 reported an annual incidence of S. pneumoniae meningitis of 1.3 per 100,000 among children under 5 years of age, based on bacterial culture results14. Another epidemiological study conducted between 2006 and 2009 in four regions of China (Jinan, Shandong; Yichang, Hubei; Guigang, Guangxi; and Shijiazhuang, Hebei) reported an annual incidence of bacterial meningitis ranging from 1.84 to 2.93 per 100,000 in the general population, and 6.95 to 22.30 per 100,000 among children under 5 years of age15. S. pneumoniae was identified as the most common pathogen, accounting for 39 confirmed cases15. Li et alindicated that among children and adults with IPD, the proportion of cases involving meningitis was 21.3% (29/136) and 17.3% (23/133), respectively (Table 5)16.

Table 5 Serotype Distribution of 269 Cases of Invasive Pneumococcal Disease in China

 PopulationChildren (by serotype) n=136Adults (by serotype) n=133
IPDChildren (136)Adults (133)Total N=26919A23F19F3146BOther19A23 F19 F3146BOther
Pneumoniae37 (27.2)48 (36.1)85 (31.6)14 (37.8)8 (21.6)5 (13.5)0 (0.0)4 (10.8)2 (5.4)4 (10.8)5 (10.4)1 (2.1)5 (10.4)12 (25.0)2 (4.2)2 (4.2)21 (43.8)
Septis48 (35.3)22 (16.5)70 (26.0)8 (16.7)6 (12.5)11 (22.9)3 (6.3)3 (6.3)3 (6.3)14 (29.2)0 (0.0)3 (13.6)3 (13.6)4 (18.2)3 (13.6)1 (4.5)8 (36.4)
Meningitis29 (21.3)23 (17.3)52 (19.3)4 (13.8)9 (31.0)5 (17.2)1 (3.4)2 (6.9)1 (3.4)7 (24.1)3 (13.0)1 (4.3)4 (17.4)3 (13.0)0 (0.0)0 (0.0)12 (52.2)
Bacteremia5 (3.7)20 (15.0)25 (9.3)1 (20.0)1 (20.0)1 (20.0)0 (0.0)1 (20.0)1 (20.0)0 (0.0)2 (10.0)2 (10.0)2 (10.0)6 (30.0)1 (5.0)0 (0.0)7 (35.0)
Other17 (12.5)20 (15.0)37 (13.8)2 (11.8)5 (29.4)4 (23.5)0 (0.0)2 (11.8)0 (0.0)4 (23.5)3 (15.0)3 (15.0)1 (5.0)3 (15.0)3 (15.0)1 (5.0)6 (30.0)

Data from population-based surveillance of bacterial meningitis in China from September 2006 to December 2009  showed  that 52.7% of bacterial meningitis in children under 5 years of age was caused by S. pneumoniae ; among children under 2 years of age, the predominant pathogens  were S. pneumoniae and Haemophilus influenzae type B 15. Another study analyzed the clinical characteristics and etiology of bacterial meningitis in children over 28 days of age in China from January 2014 to December 2016 and found that 46.9% was caused by S. pneumoniae, and that S. pneumoniae was the most common etiologic agent in children over 3 months of age (54.7%) (Figure 2, Table 6)17 .

Figure 2 Distribution of bacterial meningitis cases caused by different pathogens from 2014 to 2016
Note: Spn, Streptococcus pneumoniae; GBS, group B streptococcus; Eco, Escherichia coli; Hi, Haemophilus influenzae; SA, Staphylococcus aureus; Lis, Listeria monocytogenes; Sal, Salmonella

Table 6 Age Distribution of Bacterial Meningitis Cases Caused by Different Pathogens

Pathogen28 days – 2 months
n (%)
3-11 months
n (%)
12-35 months
n (%)
3-6 years
n (%)
>6 years
n (%)
Total n (%)
Spn1 (2.3)58 (50.4)37 (56.1)22 (59.5)18 (62.1)136 (46.9)
GBS20 (46.5)8 (7.0)1 (1.5)0 (0.0)0 (0.0)29 (10.0)
Eco 10 (23.3)13 (11.3)0 (0.0)0 (0.0)0 (0.0)23 (7.9)
Hi0 (0.0)8 (7.0)0 (0.0)2 (5.4)1 (3.4)11 (3.8)
SA3 (7.0)3 (2.6)2 (3.0)2 (5.4)0 (0.0)10 (3.5)
Lis0 (0.0)3 (2.6)5 (7.6)1 (2.7)1 (3.4)10 (3.5)
Sal0 (0.0)6 (5.2)0 (0.0)0 (0.0)1 (3.4)7 (2.4)
Nm0 (0.0)0 (0.0)1 (1.5)0 (0.0)0 (0.0)1 (0.3)
Others9 (20.9)16 (13.9)20 (30.3)10 (27.0)8 (27.7)63 (21.7)
Total43 (14.8)115 (39.7)66 (22.8)37 (12.7)29 (10.0)290 (100.0)

Spn, Streptococcus pneumoniae; GBS, group B streptococcus; Eco, Escherichia coli; Hi, Haemophilus influenzae; SA, Staphylococcus aureus; Lis, Listeria monocytogenes; Sal, Salmonella; Nm, Neisseria meningitidis.

It is estimated that in 2010, the incidence rate of S. pneumoniae meningitis among children aged under 1 year of age was 9.21 per 100,000, with a case-fatality rate of 6.23% (94/1509); the incidence rate of S. pneumoniae meningitis among children aged 1 to 4 years was 5.56 per 100,000, with a case-fatality rate of 4.26% (156/3660) 11. The age-standardized incidence rate of pneumococcal meningitis decreased from 3.45 per 100,000 in 1990 to 1.42 per 100,000 in 2010, a reduction of 58.84%. The age-standardized mortality rate decreased from 0.49 per 100,000 to 0.11 per 100,000, a reduction of 77.55%. The age-standardized disability-adjusted life years (DALY) for pneumococcal meningitis decreased from 33.97 years per 100,000 in 1990 to 9.5 years per 100,000 in 2010 (Tables 10 and 11) 11  . Additionally, the Global Burden of Disease Study estimated that in 2016, there were 606.4 deaths due to pneumococcal meningitis in China, with a mortality rate of 0.04 per 100,000 and a loss of 52,300 life years18.

Table 7 Pneumococcal Meningitis Morbidity, Mortality, and Burden of Disease, 1990 and 2010

GenderYearIncidenceStandardized Incidence (per 100,000)DeathsStandardized Mortality  (per 100,000)DALYs (person-years)DALY Rate  (per 100,000)YLD (person-years)YLD Rate  (per 100,000)YLL (person-years)YLL Rate  (per 100,000)
Male           
199024,8313.463,2910.54252,871.7537.3652,499.0910.59200,372.6626.77
201011,1961.528570.1375,923.3610.934,381.915.1441,541.455.76
Change-13,635-1.94-2,434-0.41-176,948.40-26.46-18,117.18-5.45-158,831.20-21.01
Change (%)-54.91%-56.07%-73.96%-75.93%-69.98%-70.82%-34.51%-51.46%-79.27%-78.48%
Female           
199023,0483.442,5210.44190,222.1130.3743,444.389.1146,777.7421.27
20108,6861.325770.0951,990.158.0125,382.923.9626,607.234.05
Change-14,362-2.12-1,944-0.35-138,232.00-22.36-18,061.46-5.14-120,170.50-17.22
Change (%)-62.32%-61.63%-77.11%-79.55%-72.67%-73.63%-41.57%-56.48%-81.87%-80.96%
Total           
199047,8793.455,8120.49443,093.8633.9795,943.479.85347,150.4024.12
201019,8821.421,4340.11127,913.519.559,764.834.5768,148.684.94
Change-27,997-2.03-4,378-0.38-315,180.40-24.47-36,178.64-5.28-279,001.70-19.18
Change (%)-58.47%-58.84%-75.33%-77.55%-71.13%-72.03%-37.71%-53.60%-80.37%-79.52%


Table 8 Pneumococcal Meningitis Morbidity, Mortality and Burden of Disease by Age Group, 1990 and 2010

YearAge Group (years)IncidenceIncidence Rate (per 100,000)DeathsMortality Rate (per 100,000)DALYs (person-years)DALY Rate (per 100,000)YLD  (person-years)YLD Rate (per 100,000)YLL (person-years)YLL Rate (per 100,000)
1990<14,21217.616152.5752,924.59221.2102.370.4352,822.22220.77
1–411,04611.611,0541.1190,224.0494.811,768.811.8688,455.2392.96
5–1411,0655.586060.3156,809.8628.6710,397.595.2546,412.2723.42
15–4916,8042.6523420.37186,729.1229.46,869.928.38133,523.5521.02
50–693,5062.417210.4940,795.7827.755,786.0014.0120,197.8213.74
≥701,2062.864741.1215,610.4837.069,871.1723.435,739.3013.62
2010<11,5099.21940.578,107.4249.491.620.218,072.6649.28
1–43,6605.561560.2413,641.0720.731,163.450.8213,104.5819.91
5–1439162.18940.0511,703.706.53569.812.547144.443.98
15–497,51115040.0757,873.397.684,943.894.0627,262.523.62
50–692,4450.963440.1326,173.4210.245,547.386.469,662.263.78
≥708411.092440.3410,414.5114.712,549.7310.62,902.234.1

The results of a multicenter clinical study conducted by Li et al. showed that the among IPD cases in China, the proportions of bacteremia and sepsis were 9.3% and 26.0%, respectively 16. Specifically, the proportions of S. pneumoniae bacteremia were 3.7% in children and 15.0% in adults, while the proportions of S. pneumoniae sepsis were 35.3% in children and 16.5% in adults.Results from a study in Suzhou showed that the hospitalization rate for S. pneumoniae  bacteremia was 4.16/100,000 (95% CI: 2.91-5.93/100,000) in children <5 years of age, and 3.05/100,000 (95% CI: 2.01-4.62/100,000) for S. pneumoniae 12. In Taiwan, the incidence rates of pneumococcal bacteremia are 0.9 per 100,000 person-years for the 50–64 age group, 2.5 per 100,000 person-years for the 65–74 age group, 6.1 per 100,000 person-years for the 75–84 age group, and 12.3 per 100,000 person-years for those aged 85 and older (Table 9) 19.

Table 9 Incidence, Fatality, and Cost of Pneumococcal Disease in Adults Aged 50 and Over in Taiwan, China from 2002 to 2009

 Age groups, years
50-6465-7475-8485
Incidence Rate (per 100,000 person-years)
Pneumococcal meningitis0.10.10.10.1
Pneumococcal bacteremia0.92.56.112.3
Hospitalized pneumococcal pneumonia84.4313.1820.31650.9
Outpatient pneumococcal pneumonia716.01645.53198.25305.8
Case fatality Rate (%)
Pneumococcal meningitis5.312.5
Pneumococcal bacteremia7.88.216.118.7
Hospitalized pneumococcal pneumonia7.67.810.913.6
Direct cost per case (NTD)
Pneumococcal meningitis273,293193,528344,621203,359
Pneumococcal bacteremia120,597133,753139,662126,994
Hospitalized pneumococcal pneumonia152,568169,419176,382177,723
Outpatient pneumococcal pneumonia1614198322812481
Indirect cost per case (NTD)
Pneumococcal meningitis15,960590144968771
Pneumococcal bacteremia11,704337236533372
Hospitalized pneumococcal pneumonia11,704337236533934
Outpatient pneumococcal pneumonia532141141141

average medical cost per hospitalization for pneumonia was 5,026.76 CNY.  Medical costs for all-cause pneumonia and meningitis from hospital records or medical insurance show significant regional differences, with meningitis treatment costs being substantially higher than those for pneumonia, and costs being relatively higher for children under 2 years old and adults over 50 years old3,20. There is limited data on the medical costs for laboratory-confirmed PDs in China.  From 2005 to 2009, Shanghai Children’s Hospital diagnosed 27 cases of IPD in patients under 18 years old, with an average hospital stay of 20.48 days and an average treatment cost of 18,517.39 CNY.  For pneumococcal sepsis, meningitis, and pneumonia, the average medical costs were 22,143.88 CNY, 28,899.48 CNY, and 4,295.65 CNY, respectively21.  A total of 69 patients with S. pneumoniae meningitis were diagnosed at sentinel hospitals in Jinan, Shandong Province, Yichang, Hubei Province, and Shijiazhuang, Hebei Province, from September 2006 to December 2014, with a per capita direct medical cost of 43,200 CNY, direct non-medical cost of 10,000 CNY, and total direct cost of 5.32 million CNY; total indirect costs were 10.06 million CNY; and total costs were 63.8 million CNY 15.

A systematic study in 2014 showed that the serotype distribution of invasive pneumococcal serotypes in Chinese children under 5 years of age was 19A (33.3%, IQR: 31.2%-33.3%), 19F (16.7% , IQR: 14.1%-19.6%), and 14 (12.9%, IQR: 9.2%-16.3%) (Figure 3) 22. A meta-analysis in 2019 showed that the prevalent serotypes in Chinese children were characterized by 19F (27.7%, 95% CI: 17.7-37.6%), 19A (21.2%, 95% CI: 16.4-26.1%), 14 (16.5%, 95% CI: 12.8-20.1%), 6B (8.6%, 95% CI: 5.2- 10.8%) and 23F (7.3%, 95% CI: 5.2-9.5%) were predominant. The estimated serotype coverage of PCV7, PCV10, and PCV13 was 60.8% (52.5-69.4%), 65.1% (57.7-72.4%) and 90.0% (87.1-92.8%), respectively 23.

Figure 3 Serotype Distribution of Invasive Pneumococcal Disease in Children Under 5 Years Old in China

A systematic review published in 2020 reported that the most common pneumococcal serotypes among children in mainland China were 19A (215, 22.8%), 19F (195, 20.7%), 14 (185, 19.6%), 23F (89, 9.4%), and 6B (79, 8.4%), and the serotype coverage of PCV13 was 90.4% (Table 10) 24. The study emphasized that most of the included literature highlighted the high serotype coverage of PCV13, the importance of vaccinating children with this vaccine, and recommended that pneumococcal conjugate vaccines be included in the National Immunization Program. 

Table 10 Systematic Review of Serotype Distribution of Invasive Pneumococcal Disease in Children in Mainland China

No.Study PeriodLocation in ChinaAge (years or months)No. of strainsSpecimen sourcesSerotypes (%)Vaccine Serotype Coverage (%)
PCV13PPV23
12006-200825Multi-lefta≤ 14 years171Blood, CSFd, PLe, arthroedema14 (20.5%), 19A (19.3%), 19F (17.0%), 6B (9.4%), 23F (7.6%), 18C (4.1%), 1 (3.5%), 6A (2.9%), 5 (2.3%), 9V (1.8%), 3 (1.2%), 8 (1.2%), 18(1.2%), 34 (1.2%), 11A (0.6%), 11B (0.6%), 12A (0.6%), 15B (0.6%), 17A (0.6%), 18F (0.6%), 24F (0.6%), 7C (0.6%), 7F (0.6%), 9N (0.6%), 16 (0.6%), 29 (0.6%)90.1%90.1%
22000.01-2014.0826Shenyang, Liaoning≤ 14 years256Blood, CSF, PL, ascites, arthroedema19A (35.9%), 14 (17.2%), 19F (16.0%), 6B (9.0%), 23F (8.2%), others (13.7%)93.8%
32007.01-2010.1227Nanjing, JiangsuNRc48Blood, CSF, PL, fester, ascites19F (27.1%), 19A (22.8%), 14 (18.7%), 9V (8.3%), 6B (6.3%), 23F (6.3%), 7F (4.2%), 8 (2.1%),NTc (4.2%)93.7%95.8%
42010.02-2013.0828Shenzhen, Guangdong≤ 14 years76Blood, CSF, PL, fester19F (31.58%), 19A (22.37%), 14 (15.79%), 9V (7.89%), 6B (6.59%), 23F (6.59%), 7F (3.95%), 8 (2.63%), untyped (2.63%)94.7%97.4%
52009.01-2013.1229Nanjing, JiangsuNR51Blood, CSF, PL, arthroedema, hydropericardium19F (27.45%), 19A (19.61%), 14 (17.65%), 9V (9.81%), 6B (7.84%), 23F (7.84%), 7F (5.88%), 8 (1.96%), untyped (1.96%)96.1%98.0%
62011.10-2014.0530Wenling, Zhejiang0-107 months67Blood, CSF, PL, Ascites23F (22.4%), 14 (20.9%), 6B (17.9%), 19F (9.0%), 19A (9.0%), 5 (7.5%), 9V (4.5%), 19B (3.0%), UTd (6.0%)91.0%91.0%
72012.04-2017.0331Beijing≤ 14 years111Blood, CSF, PL, fester, subdural effusion, bone marrow19F (22.5%), 19A (17.1%), 14 (16.2%), 23F (13.5%), 6B (9.0%), 6A (4.5%), 9V (3.6%), 5 (1.8%), 15B (1.8%), 24B (1.8%), 6C (1.8%), 3 (0.9%), 4 (0.9%), 8 (0.9%) , 11A (0.9%), 15C (0.9%), 19B (0.9%), 24F (0.9%)90.1%89.2%
82009.01-2012.0832Shenzhen, Guangdong≤ 14 years87Blood, CSF, PL, fester, ascites, arthroedema, broncho-alveolar lavage19F (28.7%), 14 (25.3%), 23F (11.5%), 19A (9.2%), 6B (6.9%), Other (18.4%)89.7%
92005.01-2006.1233Multi-leftb< 5 years31Blood, CSF, PL19A (29.0%), 19F (22.5%), 14 (12.9%), 5 (9.7%), 11A (6.5%), 23F (3.2%), Other (16.2%)77.4%83.9%
102013.01-2016.0434Beijing≤ 14 years old30Blood, CSF, PL, fester, ascites, bone marrow19f (36.7%), 19a (33.3%), 14 (13.3%), 23f (6.7%), 6a (6.7%), 11a (3.3%)96.7%93.3%

a This multi-left study involved 11 cities in 10 provinces: Beijing; Tianjin; Shenyang, Liaoning; Shanghai; Nanjing, Jiangsu; Suzhou, Jiangsu; Wenzhou, Zhejiang; Hefei, Anhui; Shenzhen, Guangdong; Xinjiang; Chongqing

bThis multi-left study involved 8 cities in 8 provinces: Beijing; Shanghai; Shenzhen, Guangdong; Chengdu, Sichuan; Nanjing, Jiangsu; Wuhan, Hubei; Shenyang, Liaoning; Hangzhou, Zhejiang

cNR, pediatric patients, but the accurate age information was not reported

dCSF, cerebrospinal fluid

ePL, pleural fluid

S. pneumoniae is commonly categorized as penicillin-sensitive(PSSP), penicillin-intermediate(PISP) and penicillin-resistant(PRSP). According to the 2023 bacterial resistance monitoring results from the China Antimicrobial Surveillance Network (CHINET), non-meningitis S. pneumoniae in both children and adults shows the highest resistance to erythromycin, followed by clindamycin 35.

The resistance rates of S. pneumoniae  isolated from children under 5 years old with community-acquired pneumonia in western China to erythromycin, tetracycline, clindamycin and trimethoprim-sulfamethoxazole were 94.3%, 87.8%, 94.7% and 81.1%, respectively. Additionally, 93.8% (393/419) of the isolates showed multidrug resistance36.

A 2019 multicenter study conducted in 2019 involving 10 children’s hospitals in mainland China found that PD mainly occurred in children under 5 years of age (85.1%), and S. pneumoniae had a high rate of resistance to commonly used antibiotics. For example, the resistance rates to clindamycin, erythromycin, tetracycline, and methotrexate/sulfamethoxazole were 95.8%, 95.2%, 93.6%, and 66.7%, respectively Penicillin resistance was observed in 79.5% of invasive strains and 1.3% of non-invasive strains. Multidrug resistance was also prevalent, with 21.4% (1,315/6,132) of isolates exhibiting multidrug resistance. Among IPD patients, the multidrug resistance rate was 46.1%, which was significantly higher than that observed in non-invasive cases (18.3%) 37.

Another systematic review published in 2019  analyzing the drug resistance pattern of IPD in children in mainland China reported that resistance rates of 32.0% (95% CI: 12.1–51.9%) to penicillin, 94.4% (95% CI: 90.7–98.1%) to erythromycin, 92.3% (95% CI: 87.4–97.3%) to clindamycin, 83.7% (95% CI: 75.1–92.2%) to tetracycline, and 74.4% (95% CI: 64.5–84.4%) to sulfamethoxazole 23. A systematic review published in 2020 that assessed serotype distribution and/or antimicrobial resistance in pediatric IPD cases in mainland China3 also emphasized the high resistance of S. pneumoniae to cefuroxime and erythromycin (Figure 4) 3.

Figure 4 Antimicrobial resistance rates of invasive Streptococcus pneumoniae isolates to commonly used antibiotics

Content Editor: Xiaotong Yang, Ziqi Liu, Tianyi Deng

Page Editor: Ziqi Liu


References

1 Lai X, Wahl B, Yu W, et al. National, regional, and provincial disease burden attributed to Streptococcus pneumoniae and Haemophilus influenzae type b in children in China: Modelled estimates for 2010-17. Lancet Reg Health West Pac. 2022, 16;22:100430. doi: 10.1016/j.lanwpc.2022.100430.

2 NING Guijun, YIN Zundong. Progress of research on the disease burden of pneumococcal disease in China. China Public Health, 2018, 34(11):1453-1455.

3 Yao, Kai-Hu. Overview of the burden of pneumococcal disease in China. Chinese Medical Journal, 2020, 100(42):3363-3366

4 Vaccine and Immunization Branch, Chinese Preventive Medicine Association. Expert consensus on immunization for prevention of pneumococcal disease in China (2017). Chinese Journal of Epidemiology. 2018;39(2):111–138. DOI:10.3760/cma.j.issn.0254-6450.2018.02.001

5 Yao KH, Yang YH. Streptococcus pneumoniae diseases in Chinese children: past, present and future[J]. Vaccine, 2008,26(35):4425-4433. DOI: 10.1016/j.vaccine.2008.06.052

6 XieN, ChenZY, ChenT, et al. A Cross-sectional Survey Assessing Carriage of Streptococcus pneumoniae in a Healthy Population in Xinjiang Uygur Autonomous Region of China[J]. Biomed Environ Sci, 2018,31(3):233-237. DOI: 10.3967/bes2018.029

7 Wang L, Fu J, Liang Z, et al. Prevalence and serotype distribution of nasopharyngeal carriage of Streptococcus pneumoniae in China: a meta-analysis. BMC Infect Dis. 2017;17(1):765. Published 2017 Dec 13. DOI: 10.1186/s12879-017-2816-8

8 Wang, J., Qiu, L., Bai, S. et al. Prevalence and serotype distribution of nasopharyngeal carriage of Streptococcus pneumonia among healthy children under 5 years of age in Hainan Province, China. Infect Dis Poverty 13, 7 (2024). https://doi.org/10.1186/s40249-024-01175-7

9 Chen Y, Deng W, Wang SM, et al. Burden of pneumonia and meningitis caused by Streptococcus pneumoniae in China among children under 5 years of age: a systematic literature review. PLoS One. 2011;6(11):e27333.

10 O’Brien KL, Wolfson LJ, Watt JP, et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet. 2009 Sep 12;374(9693):893-902.

11SUN Jin-fang, YAO Hong-yan, YU Shi-cheng, HU Yue-hua, WANG Qi-qi, PI Wan-di, ZHOU Mai-geng, LIU Shi-wei, LI Yi-chong. Disease Burden of three kinds of bacterial meningitis in China,1990 and 2010[J]. Disease Surveillance, 2015, 30(12): 1008-1013. DOI: 10.3784/j.issn.1003-9961.2015.12.006

12 Chen K, Zhang X, Tao Y, et al. Hospitalization for Invasive Pneumococcal Diseases in Young Children before Use of 13-Valent Pneumococcal Conjugate Vaccine, Suzhou, China. Emerg Infect Dis. 2021 Jan;27(1):69-75.

13 Wang CY, Chen YH, Fang C, et al. Antibiotic resistance profiles and multidrug resistance patterns of Streptococcus pneumoniae in pediatrics: a multicenter retrospective study in mainland China. medicine (Baltimore). 2019;98(24):e15942

14 Dong BQ, Tang ZZ, Lin M, et al. Epidemiologic surveillance for bacterial meningitis in 140,000 children under 5 years of age in Nanning District, Guangxi Province. Chinese Journal of Epidemiology. 2004;25(5):391–395.

15 LiY, YinZ, ShaoZ, et al. Population-based surveillance for bacterial meningitis in China, September 2006-December 2009. Emerg Infect Dis, 2014,20(1) :61-9.

16 Li MC, Wang Y, Zhang H, et al. Serotype distribution and clinical characteristics associated with streptococcus pneumoniae among Chinese children and adults with invasive pneumococcal disease: a multicenter observational study. Hum Vaccin Immunother. 2021 Jan 2;17(1):146-156.

17 Li C, Feng WY, Lin AW, et al. Clinical characteristics and etiology of bacterial meningitis in Chinese children >28 days of age, January 2014-December 2016: A multicenter retrospective study. Int J Infect Dis. 2018 Sep;74:47-53.DOI: 10.1016/j.ijid.2018.06.023

18 GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017, 390(10100): 1151-1210. DOI: 10.1016/S0140-6736(17)32152-9.

19 Wu DB, Roberts CS, Huang YC, et al. A retrospective study to assess the epidemiological and economic burden of pneumococcal diseases in adults aged 50 years and older in Taiwan. J Med Econ. 2014 May;17(5):312-9.

20 National Health Commission of the People’s Republic of China. 2018 China Health and Family Planning Statistical Yearbook [monograph]. Beijing: Peking Union Medical College Press; 2018.

21 Song Shengfan. Health Economics Evaluation of Streptococcus pneumoniae Disease Cost Study and Heptavalent Pneumococcal Conjugate Vaccine [D]. Shanghai: Fudan University, 2013.

22 WEI Ning,AN Zhijie,WANG Huaqing. Systematic evaluation of pneumococcal serotype distribution among pneumococcal-associated cases in Chinese population ≤18 years old[J]. China Vaccine and Immunization,2014,06:547-555.

23 Fu J, Yi R, Jiang Y, et al. Serotype distribution and antimicrobial resistance of Streptococcus pneumoniae causing invasive diseases in China: a meta- analysis. BMC Pediatr. 2019;19(1):424. published 2019 Nov 11.

24 Men W, Dong Q, Shi W, et al. Serotype distribution and antimicrobial resistance patterns of invasive pneumococcal disease isolates from children in mainland China-a systematic review. Braz J Microbiol. 2020;51(2):665-672.

25 Xue L, Yao K, Xie G, et al. Serotype distribution and antimicrobial resistance of Streptococcus pneumoniae isolates that cause invasive disease among Chinese children. Clin Infect Dis. 2010;50:741-744.

26 Zhou X, Liu J, Zhang Z, et al. Molecular characteristics of penicillin-binding protein 2b, 2x and 1a sequences in Streptococcus pneumoniae isolates causing invasive diseases among children in Northeast China. Eur J Clin Microbiol Infect Dis. 2016;35:633-645.

27 Xu F, Chi FL, et al. Study on serotype distribution in 48 isolates of invasive Streptococcus pneumoniae with which children infected. Chin J Biochem Pharm . 2012;33:909-912.

28 Lu C. Investigation on serotype distribution of invasive pneumococcal disease isolates from children. Int J Lab Med. 2015;36:990-992.

29 Zhou K, Xie GJ, Wang XW, et al. Clinical characteristics of invasive pneumococcal disease and its serotype distribution. Chin J Nosocomiol. 2015;25. 3392-3394.

30 Wang J, Liu F, Ao P, et al. Detection of serotype distribution and drug resistance of Streptococcus pneumoniae isolated from pediatric patients. Lab Med. 2017;48:39-45.

31 Shi W, Li J, Dong F et al. Serotype distribution, antibiotic resistance pattern, and multilocus sequence types of invasive Streptococcus pneumoniae isolates in two tertiary pediatric hospitals in Beijing prior to PCV13 availability. Expert Rev Vaccines. 2019;18:89-94.

32 Ma X, Zhao R, Ma Z, et al. Serotype distribution and antimicrobial resistance of Streptococcus pneumoniae isolates causing invasive diseases from Shenzhen Children’s Hospital. PLoS One. 2013;8:e67507.

33 Liu Y, Wang H, Chen M, et al. Serotype distribution and antimicrobial resistance patterns of Streptococcus pneumoniae isolated from children in China Diagn Microbiol Infect Dis. 2008;61:256-263.

34 Wang Q, Wu J, Liu J, et al. Clinical features and outcomes of invasive pneumococcal disease in pediatric intensive care unit. chin J Appl Clin Pediatr. 2016 ;31:1400-1404.

35 Hu FP, Ding L, Guo Y, et al. CHINET 2023 national bacterial resistance surveillance results [Internet]. [cited 2024 Jul 17]. Available from: http://hncis.hnwsjk.cn/ganran/contents/41/11164.html

36 Liang Z, Fu J, Li L, et al.. Molecular epidemiology of Streptococcus pneumoniae isolated from pediatric community-acquired pneumonia in pre-conjugate vaccine era in Western China. Ann Clin Microbiol Antimicrob. 2021 Jan 6;20(1):4. DOI: 10.1186/s12941-020-00410-x

37 Wang CY, Chen YH, Fang C, et al. Antibiotic resistance profiles and multidrug resistance patterns of Streptococcus pneumoniae in pediatrics: A multicenter retrospective study in mainland China. Medicine (Baltimore). 2019;98(24):e15942.DOI: 10.1097/MD.0000000000015942

代表性地区的基本情况、接种政策及效果、宣传推动情况

(1) 成都市

 

基本情况

成都市2022年度GDP为20817.5亿元,排名全国城市第七。成都市出台了《健康城市建设推动健康中国行动创新模式成都市宫颈癌综合防控试点工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为13-14岁在校且无HPV疫苗接种史女生。免疫程序为国产二价0-6二剂次、进口二价0-1-6三剂次、进口四价0-2-6三剂次。资助政策为国产二价疫苗(沃泽惠)免费,其它疫苗补贴600元/人,并自付20元/剂接种费。疫苗接种按照属地化管理原则,由学校所在地预防接种单位负责。截至2022年1月,目标人群首针接种率达90.04%[14]。

宣传推动

成都市开展多形式、多载体的健康教育宣传。形式包括讲座、知晓日、义诊咨询、专题课程、专题活动等,载体包括宣传册、宣传栏、展板、电视、微信、视频号、抖音平台等,覆盖相关医疗机构300余、社区300余个、和公众场所90余个。面向适龄女孩及监护人、适龄女性及全体市民开展广泛宣教,宣传材料发放至近9万名群众,讲座活动覆盖近2万名群众。宣教内容包括HPV疫苗接种、两癌防控、其它女性常见疾病防控等。

(2) 济南市

 

基本情况

济南市2022年度GDP为12027.5亿元,位列全国城市排名20。2021年,济南市出台《健康城市建设推动健康中国行动创新模式试点一济南市宫颈癌综合防治工作方案(2021—2025年)》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为≤14周岁且无HPV疫苗接种史的在校七年级女生。免疫程序为国产二价0-6二剂次。资助政策免费接种。疫苗接种按照属地化管理原则,安排分班级分时段前往学校所在地的预防接种单位进行接种。截至2022年11月,目标人群首针接种率达
94.4%[15].

宣传推动

济南市开展多形式、多载体的健康教育宣传。形式包括采访、线上线下专题活动,载体包括网络媒体、纸媒、科普展板、宣传手册、子宫颈癌与HPV疫苗知识读本、济南HPV疫苗接种手册,宣教人群广泛涵盖全体市民,宣教内容包括HPV疫苗接种、两癌防控等知识。

(3) 鄂尔多斯市

 

基本情况

鄂尔多斯市2022年度GDP为5613.44亿元,全国地级市第45位。2021年,鄂尔多斯市出台了《健康城市建设推动健康鄂尔多斯行动创新模式工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

2020年8月,鄂尔多斯市在准格尔旗率先开展HPV疫苗免费接种项目。目标人群为全市当年13-18岁在校且无HPV疫苗接种史女生。免疫程序为进口二价0-1-6三剂次,

2023年起调整为13-14岁女孩0-6二剂次。资助政策为疫苗免费,自付20元/剂接种费。组织方式为疫苗接种服务中心根据任务安排联系学校,有规划的通知适龄女孩前来完成HPV疫苗接种。截至2022年11月,目标人群首针接种率接近70%[16]。

2022年8月,启动准格尔旗和达拉特旗高三女生接种四价和九价HPV疫苗的试点工作,利用暑假时间展开接种,力争在2023年年底达成90%的接种目标[17]。自鄂尔多斯之后,由政府主导的HPV疫苗惠民行动在多地等涌现。值得注意的是,近年来多主体参与到HPV疫苗支持项目,如慈善总会、医院、妇联等为主体单位牵头组织开展了一些公益活动。

宣传推动

鄂尔多斯市开展多形式、多载体的健康教育宣传。形式包括讲座、知晓日、义诊咨询、专题课程、专题活动等,载体包括宣传册、宣传栏、展板、电视、微信、视频号、抖音平台等,宣教人群广泛涵盖在校女孩及监护人,适龄女性及全体市民。宣教内容包括HPV疫苗接种、两癌防控、其它女性常见疾病防控等。

(4) 西安市

 

基本情况

西安市2022年度GDP为11486.51亿元,排名全国第22位。2021年,西安市出台了《西安市健康城市建设推动健康中国行动创新模式试点宫颈癌综合防治工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为全市年龄满13周岁(初中)在校女生。免疫程序为国产二价0-6二剂次,进口二价0-1-6三剂次,进口四价和进口九价0-2-6三剂次。接种政策为自愿自费。各区(县)合理设立HPV疫苗专项疫苗接种门诊承担接种任务,并及时将接种信息统一录入儿童免疫规划信息平台。

宣传推动

西安市出台了《西安市宫颈癌综合防治宣传方案》(市健办发〔2022〕12号)。通过媒体宣传、社区活动、义诊等形式,宣传册、宣传栏、展板、电视、微信公众号、报纸等载体普及宫颈癌防治相关知识。

(5) 西藏自治区

 

基本情况

西藏自治区2022年度GDP为2132.64亿元,经济总量整体规模相对其他省份较小,人均GDP处于全国中等偏下水平。2022年出台《西藏自治区妇女“两癌”综合防治工作实施方案》等系列政策推动适龄女孩HPV疫苗接种。

接种政策及效果

目标人群为13-14岁在校女生。免疫程序为国产二价0-6二剂次。资助政策为免费。由学校组织,接种者在商定接种时间携带个人身份证明材料与法定监护人一同前往定点接种单位接种。

宣传推动

充分利用网络、电视、广播、报刊等媒介,以群众喜闻乐见的宣传方式,对适龄在校女生HPV疫苗接种工作的意义及内容进行广泛宣传。

近年来各地HPV疫苗惠民项目信息

“疾病负担”指标解读

疾病负担(burden of disease, BOD)是指疾病造成的失能(伤残)、生活质量下降和过早死亡对健康和社会造成的总损失,包括疾病的流行病学负担和经济负担两个方面。

 

在疾病的流行病学方面,衡量疾病负担的常用指标包括传统指标和综合指标。

 

传统指标

传统疾病负担的衡量指标包括:用于描述和反映健康状况与水平的常规指标,如死亡人数、伤残人数和患病人数等绝对数指标;以及用来比较不同特征人群疾病分布差异的指标,如发病率、伤残率、患病率、死亡率、门诊和住院率等相对数指标。

 

上述传统疾病负担的衡量指标基本上只考虑了人口的生存数量,而忽略了生存质量,不够全面;但优势在于资料相对计算方便,结果直观,可用于各种疾病的一般性描述。

 

综合指标

疾病负担不等同于死亡人数,综合指标弥补了传统指标的单一性,且可以让各种不同疾病造成的负担之间相互比较。

 

潜在寿命损失年(YPLL):通过疾病造成的寿命损失来估计疾病负担的大小。但忽略了疾病造成的失能对生存质量的影响。

 

伤残调整寿命年(DALYs):将死亡和失能相结合,用一个指标来描述疾病的这两方面的负担。它包括因早死造成健康生命年的损失(YLL)和因伤残造成健康生命年的损失(YLD),即DALY=YLL+YLD。目前,DALY是国内外一致公认的最具代表性、运用最多的疾病负担评价指标。

 

健康期望寿命(HALE):指具有良好健康状态的生命年以及个体在比较舒适的状态下生活的平均预期时间,综合考虑生命的质量和数量两方面。

 

 

随着疾病负担研究的深入,其测量范围从流行病学负担扩大到经济负担。

 

疾病经济负担是由于发病、伤残(失能)和过早死亡给患者本人、家庭以及社会带来的经济损失,和由于预防治疗疾病所消耗的经济资源。

详细见:疾病的“经济负担”怎么计算?

 

参考资料:

陈文. 卫生经济学 [M]. 人民卫生出版社. 2017.

李茜瑶,周莹,黄辉等.疾病负担研究进展[J].中国公共卫生,2018,34(05):777-780.

什么是“年龄标化”?

在流行病学研究中,年龄是多种疾病的危险因素。以发病率为例,该指标反映了一定时期内,特定人群中癌症新发病例的情况。由于年龄是癌症发生的一个重要影响因素,年龄越大,发病率就越高。

 

如果两个国家的人群年龄结构相差很大,例如A市老年人口比例更大,B市年轻人口占比更高,直接比较两地癌症发病率的高低,我们不能确定发病率较高的市,是因为年龄构成不同还是因为其他影响因素(如饮食习惯、环境等)所导致。因此,需要用“年龄标化”的统计学方法,进一步处理数据,排除年龄影响因素的干扰,再来比较两地的发病率数据。

 

以发病率为例,即把原始数据套到一个“标准年龄结构人群里”,计算出”年龄标化发病率“,这样人群结构不同的A市和B市,就能在同一个指标尺度下进行“发病率”比较。年龄标化通常有“中标率”,即我国各地基于某一年份的中国人口年龄结构构成作为标准计算,国内不同地区的疾病数据比较采用的是“中标率”;另一种是“世标率”,即用世界标准人口构成机型标化计算,适用于国与国之间的指标比较。

 

同样地,以死亡率为例,应特别注意各之间地人口构成的差异。用标准化死亡率进行比较才能得出正确结论。如甲、乙两地在未标化前的肺癌死亡率相同,但实际上乙地人群的肺癌死亡率要明显地高于甲地,其原因在于甲地男性老年人口居多,而肺癌的死亡率又与年龄和性别有关,所以用未标化率进行比较时,就会得出甲乙两地肺癌死亡率相同的错误结论。

 

参考资料:

 

张科宏教授:年龄标化的患病率 – 丁香公开课 (dxy.cn)

科学网—癌症(粗)发病率与标化发病率的区别 – 杨雷的博文 (sciencenet.cn)

WHO年龄标化死亡率定义及计算方法

沈洪兵,齐秀英. 流行病学 [M]. 人民卫生出版社. 2015.

疾病的“经济负担”怎么计算?

疾病经济负担是由于发病、伤残(失能)和过早死亡给患者本人、家庭以及社会带来的经济损失,和由于预防治疗疾病的费用。通过计算疾病的经济负担,可以从经济层面上研究或比较不同疾病对人群健康的影响。

总疾病经济负担包括直接疾病经济负担、间接疾病经济负担和无形疾病经济负担。

直接经济负担:指直接用于预防和治疗疾病的总费用,包括直接医疗经济负担和直接非医疗经济负担两部分。直接医疗经济负担是指在医药保健部门购买卫生服务的花费,主要包括门诊费(如挂号费、检查费、处置费、诊断费、急救费等)、住院费(如手术费、治疗费等)和药费等。直接非医疗经济负担包括和疾病有关的营养费、交通费、住宿费、膳食费、陪护费和财产损失等。

间接经济负担:指由于发病、伤残(失能)和过早死亡给患者本人和社会带来的有效劳动力损失而导致的经济损失。具体包括:劳动工作时间损失、个人工作能力和效率降低造成的损失、陪护病人时损失的劳动工作时间、精神损失等。

无形经济负担:指患者及亲友因疾病在心理、精神和生活上遭受的痛苦、悲哀、不便等生活质量下降而产生的无形损失。

 

参考资料:

陈文. 卫生经济学 [M]. 人民卫生出版社. 2017.

李茜瑶,周莹,黄辉等.疾病负担研究进展[J].中国公共卫生,2018,34(05):777-780.