Epidemiology of Rotavirus and Rotavirus Infection: Global and China Status

Table of Content

Epidemiology of Rotavirus and Rotavirus Infection: Global and China Status

Rotavirus Types and Human Transmission Sources

Rotavirus (RV) is one of the leading cause of rotavirus gastroenteritis (RVGE) in children under the age of five worldwide1,2. Rotavirus consists of multiple types, with Group A rotavirus (RVA) being the most common, accounting for over 95% of human infections³. Due to differences in the outer capsid proteins, rotavirus exhibits genetic diversity. In humans, at least 11 different G genotypes and 11 different P genotypes exist, and various combinations of these genotypes distinguish the virus strains4-8. The predominant RV genotypes globally include G9P[8], G8P[8], G3P[8], G1P[8], G2P[4], and G4P[8] 4.

Among human populations, asymptomatic individuals infected with rotavirus and those suffering from RVGE are the primary sources of transmission. A systematic review analyzing 361 datasets on rotavirus genotypes among children under the age of five from 2005 to 2023 found that within one to two years of vaccine introduction, the prevalence of the non-vaccine genotype G2P[4] significantly increased in vaccinated regions. However, this trend was not observed in the Pan American Health Organization (PAHO) region6.

Figure 2.1 Detected Rotavirus Genotypes Globally and by Region
(“None” indicates that the rotavirus vaccine had not yet been introduced at the time of genotype data collection, while “After” indicates that the vaccine had been introduced. Abbreviations: AFRO – African Region; AMRO – American Region; EMRO – Eastern Mediterranean Region; EURO – European Region; SEARO – Southeast Asian Region; WPRO – Western Pacific Region.)

Between 2009 and 2014, Group A rotavirus was the most prevalent serotype among rotavirus diarrhea cases in children under five years old, accounting for an average of 95.1% (4,404 cases) of all strains, while Groups B and C accounted for only 2.8% (129 cases) and 2.1% (98 cases), respectively³. The dominant genotype of Group A rotavirus in China has gradually shifted over time. Initially, the predominant G genotypes were G3 and G1, but later G9 became the dominant strain. The P genotype has consistently been dominated by P[8]. As a result, the predominant genotype combination shifted from G3P[8] to G9P[8], aligning with global trends in circulating strains⁶.

Domestic G3, G9, and P[8] rotavirus strains have been found to be homologous to strains from Russia and Belgium, with evolutionary trends similar to those observed in Russia⁷⁸. During the 2021–2022 rotavirus season, observations in Shanghai indicated that the most common G genotype was G8, followed by G9, while the most prevalent P genotype was P[8], accounting for 97.4% of cases. G8P[8] had become the most common circulating strain²⁶. Another study found that the dominant Group A rotavirus genotype in Beijing also shifted from G9‐VP[8]‐III in 2019–2021 to G8‐VP[8]‐III in 2022. Furthermore, the P[8] sequence of the G8‐VP[8]‐III strain formed a new branch. Researchers speculate that this phenomenen may be associated with rotavirus vaccine administration⁹.

Figure 2.2 G/P Genotypes Observed in Shanghai
Data Source: Ma W, Wei Z, Guo J, et al. Effectiveness of Pentavalent Rotavirus Vaccine in Shanghai, China: A Test-Negative Design Study. J Pediatr. 2023;259:113461. doi:10.1016/j.jpeds.2023.113461
Figure 2.3: Summary of Rotavirus Groups Detected in 162 Sentinel Hospitals in China (2009–2014)
Data Source: Expert Consensus on Immunization Prevention of Rotavirus Gastroenteritis in Children (2024 Edition)
Figure 2.4: Summary of Group A Rotavirus Subtypes Detected in 162 Sentinel Hospitals in China (2009–2014)
Data Source: Expert Consensus on Immunization Prevention of Rotavirus Gastroenteritis in Children (2024 Edition)

Main Transmission Routes

The spread of RVGE requires three fundamental elements: a source of infection, a mode of transmission, and a susceptible population. If any of these elements are missing, new rotavirus infections cannot occur. Various natural and social factors can influence these three elements and their interactions, thereby affecting disease transmission and its prevalence.³

Rotavirus is primarily transmitted through the fecal-oral route, meaning infection occurs through contact with food, water, objects, or surfaces contaminated with the virus.¹⁰ Rotavirus may also spread through respiratory transmission, although this is less common.¹¹ Rotavirus infection typically has an acute onset, with major symptoms including nausea, vomiting, diarrhea, and fever.¹⁰ ¹² Severe rotavirus infection can lead to electrolyte imbalances, acid-base disturbances, and even death.

Susceptible Populations

Children under five years old, especially infants and toddlers aged 3 to 35 months, are at the highest risk of rotavirus infection, with non-daycare children being the most affected cases.¹³ ¹⁴ While most adults have acquired some immunity to rotavirus, elderly individuals, immunocompromised individuals, and those with specific genetic factors remain susceptible to infection.¹⁵ ¹⁶

Seasonal and Regional Distribution

(1) Global Seasonal and Regional Distribution of Rotavirus

RVGE occurs year-round, with clear seasonal peaks in most regions worldwide, though the timing of peak incidence varies across different geographical areas.³

Before the widespread introduction of rotavirus vaccines, RVGE outbreaks in temperate regions of the Northern Hemisphere typically peaked during autumn and winter (October to February) and early spring (March to May). In the Southern Hemisphere, peak incidence generally occurred from May to October, corresponding to the winter season in that region. In tropical regions, RVGE persists year-round, with fluctuations in incidence each month. However, these fluctuations are less pronounced compared to the distinct seasonal patterns observed in temperate regions.¹⁷

Rotavirus can be detected throughout the year in Africa, Asia, and South America. In contrast, regions such as Europe, North America, and Oceania exhibit more distinct seasonal patterns. Following the introduction of rotavirus vaccines, the peak season for RVGE in these regions has shifted, with a delayed onset, a shorter duration of outbreaks, and a reduced peak intensity.¹⁸ ¹⁹

The coverage rate of rotavirus vaccination significantly influences the seasonal distribution of the disease. For example, two years after the large-scale introduction of rotavirus vaccination in Western European countries, the start and/or end of the RVGE season, as well as the peak incidence period, were delayed by approximately 4 to 7 weeks.²⁰

Figure 2.5: Mortality Rate of Diarrheal Diseases Caused by Rotavirus in Children Under Five in Southeast Asian Countries (1990–2017)
Source: Lestari, F. B., Vongpunsawad, S., Wanlapakorn, N., & Poovorawan, Y. Rotavirus infection in children in Southeast Asia 2008–2018: disease burden, genotype distribution, seasonality, and vaccination. J Biomed Sci 27, 66 (2020).

(2) Seasonal and Regional Distribution of Rotavirus in China

Rotavirus is more easily transmitted during cold seasons, and in recent years, a secondary peak has also been observed in spring in China. It remains the leading cause of diarrhea in children under five years old. RVGE can occur year-round in this population, with a distinct seasonal distribution.³ The peak incidence typically occurs between November and February, often referred to as the “autumn diarrhea” season.

The reported incidence of rotavirus in both southern and northern China has shown a fluctuating upward trend. The reported incidence rate in the south (90.1 per 100,000) is higher than the national average, while the north (26.0 per 100,000) is below the national level. The number of reported cases in the south (745,526 cases) is 9.9 times higher than in the north (74,935 cases). The incidence trend in the south closely mirrored the national pattern, with three peaks recorded in 2013 (160.5 per 100,000), 2017 (211.7 per 100,000), and 2018 (189.7 per 100,000). In contrast, the north only experienced a single peak in 2017 (72.9 per 100,000).¹⁴

Meta-analysis results indicate that between 2011 and 2018, RVGE cases accounted for 34.0% of all diarrhea-related medical visits among children under the age of five in China, with significant regional variations in rotavirus detection rates.²¹ Sentinel surveillance data show notable differences between southern and northern provinces regarding rotavirus positivity rates among hospitalized children with acute gastroenteritis (AGE). From 2016 to 2019, the rotavirus positivity rate in peak months (December or January) was generally higher in southern provinces than in northern provinces. However, from 2020 to 2021, the positivity rate in northern provinces exceeded that of the south.¹⁴ Additionally, the positivity rate during low-incidence months was consistently lower in southern provinces than in northern provinces.

In rural areas of China, the detection rate of rotavirus in RVGE cases is generally higher than in urban areas.²² ²³ A systematic review found that the median detection rate of rotavirus among hospitalized children under five years old was 46.7% in rural areas and 39.8% in urban areas.

Figure 2.6: Monthly Distribution of Increased Reported Cases of Rotavirus Diarrhea in Children Under Five (2005-2018), Peak Years of Increased Cases (Excluding Data from Hong Kong, Macau, and Taiwan, China; Increased Cases were Compared to the Previous Year)
Source: Luo Hongmei, Ran Lu, Meng Ling, Lian Yiyao & Wang Liping. Analysis of the Epidemiological Characteristics of Reported Cases of Rotavirus Diarrhea in Children Under Five in China (2005–2018). Chinese Journal of Preventive Medicine 181-182-183-184-185–186 (2020).
Figure 2.7: Reported Incidence Rates of Rotavirus Diarrhea in Children Under Five in Northern and Southern China (2005-2018) (Excluding Data from Hong Kong, Macau, and Taiwan)
Source: Luo Hongmei, Ran Lu, Meng Ling, Lian Yiyao & Wang Liping. Analysis of the Epidemiological Characteristics of Reported Cases of Rotavirus Diarrhea in Children Under Five in China (2005–2018). Chinese Journal of Preventive Medicine 181-182-183-184-185–186 (2020).

Population Distribution of Rotavirus Infection

Rotavirus infection can occur in all age groups globally, but it predominantly affects children under the age of five. There is no significant difference in incidence rates between males and females. International studies show that approximately 50% of adults develop an immune response after being in contact with children hospitalized for RVGE. In areas where the rotavirus vaccine has been included in the National Immunization Program (NIP), the incidence of AGE and RVGE in older children, adults, and the elderly has decreased. In immunocompromised individuals, such as those with congenital immune deficiencies, or patients who have undergone bone marrow or organ transplants, rotavirus infection can lead to severe and persistent RVGE, potentially threatening life. Surveillance data from Germany, Finland, and Australia show that the proportion of rotavirus infections among the elderly is on the rise. In China, there is a significant difference in rotavirus positivity rates across different populations, with males (20.2%) showing higher rates than females (17.4%). The highest positivity rate is found in children under five years old (28.4%), which is more than four times higher than in adults. The second highest positivity rate is among adults aged 50-60 years and elderly individuals over 60, at approximately 6.0%–7.0%. In terms of annual trends, from 2009 to 2020, the positivity rate for adults aged 18 years and above fluctuated at a low level (1.8%), while the positivity rates for diarrheal patients in the 17-year-old student group and the 0–4-year-old children’s group followed a similar trend, with greater fluctuations, decreasing from 39.2% to 3.3% and from 45.4% to 15.5%, respectively.

The main age group for RVGE patients in China is children under the age of five, with significant regional and temporal differences in cases within this age group. Between 2009 and 2020, rotavirus testing was conducted on 114,606 diarrheal cases from 252 sentinel hospitals across 28 provinces in China. The results showed that 21,872 cases tested positive for rotavirus, with 84.3% of cases being from children under five years old. The incidence of RVGE decreases as age increases.

Figure 2.8: Rotavirus Positive Cases in China from 2009 to 2020
Source: Tang Bicheng et al. “Epidemiological Features and Genotype Trends of Rotavirus Diarrhea in China from 2009 to 2020.” Chinese Journal of Epidemiology, 45, 506–512 (2024)
Figure 2.9: Rotavirus Positive Cases in Sentinel Hospitals across Different Climatic Zones in China from 2009 to 2020
Source: Tang Bicheng et al. “Epidemiological Features and Genotype Trends of Rotavirus Diarrhea in China from 2009 to 2020.” Chinese Journal of Epidemiology, 45, 506–512 (2024).

Content Editor: Xiaotong Yang, Ziqi Liu

Page Editor: Ziqi Liu


References

  1. Rotavirus Vaccination | CDC. https://www.cdc.gov/vaccines/vpd/rotavirus/index.html (2023).
  2. Rotavirus. https://www.who.int/teams/immunization-vaccines-and-biologicals/diseases/rotavirus.
  3. Consensus on the Immunoprevention of Rotavirus Gastroenteritis in Children (2024 Edition). 58, (2024). (In Chinese)
  4. Matthijnssens, J. et al. Uniformity of Rotavirus Strain Nomenclature Proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 156, 1397–1413 (2011).
  5. Sadiq, A., Bostan, N., Yinda, K. C., Naseem, S. & Sattar, S. Rotavirus: Genetics, pathogenesis and vaccine advances. Reviews in Medical Virology 28, e2003 (2018).
  6. Avnika B. Amin, Jordan E. Cates, Zihao Liu, Joanne Wu, Iman Ali, Alexia Rodriguez, Junaid Panjwani, Jacqueline E. Tate, Benjamin A. Lopman, Umesh D. Parashar, Rotavirus Genotypes in the Postvaccine Era: A Systematic Review and Meta-analysis of Global, Regional, and Temporal Trends by Rotavirus Vaccine Introduction, The Journal of Infectious Diseases, Volume 229, Issue 5, 15 May 2024, Pages 1460–1469, https://doi.org/10.1093/infdis/jiad403.
  7. Mao, T. et al. Phylogenetic analysis of the viral proteins VP4/VP7 of circulating human rotavirus strains in China from 2016 to 2019 and comparison of their antigenic epitopes with those of vaccine strains. Front Cell Infect Microbiol 12, 927490 (2022).
  8. Sashina, T. A., Morozova, O. V., Epifanova, N. V. & Novikova, N. A. Predominance of new G9P[8] rotaviruses closely related to Turkish strains in Nizhny Novgorod (Russia). Arch Virol 162, 2387–2392 (2017).
  9. Tian, Y., Shen, L., Li, W., Yan, H., Fu, J., Liu, B., Wang, Y., Jia, L., Li, G., Suo, L., Zhang, D., Gao, Z., & Wang, Q. (2024). Major changes in prevalence and genotypes of rotavirus diarrhea in Beijing, China after RV5 rotavirus vaccine introduction. Journal of Medical Virology, 96(5), e29650. https://doi.org/10.1002/jmv.29650.
  10. Dennehy, P. H. Transmission of rotavirus and other enteric pathogens in the home: The Pediatric Infectious Disease Journal 19, S103–S105 (2000).
  11. Goldwater, P. N., Chrystie, I. L. & Banatvala, J. E. Rotaviruses and the respiratory tract. Br Med J 2, 1551 (1979).
  12. Butz, A. M., Fosarelli, P., Dick, J., Cusack, T. & Yolken, R. Prevalence of Rotavirus on High-Risk Fomites in Day-Care Facilities. Pediatrics 92, 202–205 (1993).
  13. 2015—2021 Zhongshan City Rotavirus Diarrhea Epidemic Characteristics Analysis – Ding Jinyan.pdf. (In Chinese)
  14. Luo Hongmei, Ran Lu, Meng Ling, Lian Yiyao, Wang Liping. Analysis of the Epidemiological Characteristics of Rotavirus Diarrhea in Children Under 5 Years in China from 2005–2018. Chinese Journal of Preventive Medicine 181-182-183-184-185–186 (2020). DOI: 10.3760/cma.j.issn.0253-9624.2020.02.013. (In Chinese)
  15. Yandle, Z., Coughlan, S., Dean, J., Hare, D. & De Gascun, C. F. Indirect impact of rotavirus vaccination on viral causes of acute gastroenteritis in the elderly. Journal of Clinical Virology 137, 104780 (2021).
  16. Rosettie, K. L. et al. Indirect Rotavirus Vaccine Effectiveness for the Prevention of Rotavirus Hospitalization: A Systematic Review and Meta-Analysis. Am J Trop Med Hyg 98, 1197–1201 (2018).
  17. Troeger, C. et al. Rotavirus Vaccination and the Global Burden of Rotavirus Diarrhea Among Children Younger Than 5 Years. JAMA Pediatr 172, 958 (2018).
  18. Barsoum, Z. Regional hospitalization and seasonal variations of Pediatric rotavirus gastroenteritis pre- and post-RV vaccination: a prospective and retrospective study. World J Pediatr 18, 404–416 (2022).
  19. WHO. Rotavirus vaccines: WHO position paper. July 2021. Wkly Epidemiol Rec, 2021, 96(28):301-320. https://www.who.int/publications/i/item/WHO-WER9628.
  20. Verberk, J. D. M. et al. Impact analysis of rotavirus vaccination in various geographic regions in Western Europe. Vaccine 39, 6671–6681 (2021).
  21. Li, J., Wang, H., Li, D., Zhang, Q. & Liu, N. Infection status and circulating strains of rotaviruses in Chinese children younger than 5-years old from 2011 to 2018: systematic review and meta-analysis. Hum Vaccin Immunother 17, 1811–1817.
  22. Chen, C. et al. Prevalence of Enteropathogens in Outpatients with Acute Diarrhea from Urban and Rural Areas, Southeast China, 2010–2014. Am J Trop Med Hyg 101, 310–318 (2019).
  23. Tian, Y. et al. Group A rotavirus prevalence and genotypes among adult outpatients with diarrhea in Beijing, China, 2011–2018. Journal of Medical Virology 93, 6191–6199 (2021).
  24. Baker, J. M., Dahl, R. M., Cubilo, J., Parashar, U. D. & Lopman, B. A. Effects of the rotavirus vaccine program across age groups in the United States: analysis of national claims data, 2001–2016. BMC Infect Dis 19, 186 (2019).
  25. Willame, C. EuroRotaNet: Annual report 2014. https://www.eurorotanet.com/wp-content/uploads/2021/11/EuroRotaNet_report-2020_20211115_Final_v1.0.pdf.
  26. Tang, Bicheng et al. The Epidemiological Characteristics and Genotype Changes of Rotavirus Diarrhea in China from 2009 to 2020. Chinese Journal of Epidemiology 45, 506–512 (2024). (In Chinese)
  27. Ma W, Wei Z, Guo J, et al. Effectiveness of Pentavalent Rotavirus Vaccine in Shanghai, China: A Test-Negative Design Study. J Pediatr. 2023;259:113461. doi:10.1016/j.jpeds.2023.113461.

代表性地区的基本情况、接种政策及效果、宣传推动情况

(1) 成都市

 

基本情况

成都市2022年度GDP为20817.5亿元,排名全国城市第七。成都市出台了《健康城市建设推动健康中国行动创新模式成都市宫颈癌综合防控试点工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为13-14岁在校且无HPV疫苗接种史女生。免疫程序为国产二价0-6二剂次、进口二价0-1-6三剂次、进口四价0-2-6三剂次。资助政策为国产二价疫苗(沃泽惠)免费,其它疫苗补贴600元/人,并自付20元/剂接种费。疫苗接种按照属地化管理原则,由学校所在地预防接种单位负责。截至2022年1月,目标人群首针接种率达90.04%[14]。

宣传推动

成都市开展多形式、多载体的健康教育宣传。形式包括讲座、知晓日、义诊咨询、专题课程、专题活动等,载体包括宣传册、宣传栏、展板、电视、微信、视频号、抖音平台等,覆盖相关医疗机构300余、社区300余个、和公众场所90余个。面向适龄女孩及监护人、适龄女性及全体市民开展广泛宣教,宣传材料发放至近9万名群众,讲座活动覆盖近2万名群众。宣教内容包括HPV疫苗接种、两癌防控、其它女性常见疾病防控等。

(2) 济南市

 

基本情况

济南市2022年度GDP为12027.5亿元,位列全国城市排名20。2021年,济南市出台《健康城市建设推动健康中国行动创新模式试点一济南市宫颈癌综合防治工作方案(2021—2025年)》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为≤14周岁且无HPV疫苗接种史的在校七年级女生。免疫程序为国产二价0-6二剂次。资助政策免费接种。疫苗接种按照属地化管理原则,安排分班级分时段前往学校所在地的预防接种单位进行接种。截至2022年11月,目标人群首针接种率达
94.4%[15].

宣传推动

济南市开展多形式、多载体的健康教育宣传。形式包括采访、线上线下专题活动,载体包括网络媒体、纸媒、科普展板、宣传手册、子宫颈癌与HPV疫苗知识读本、济南HPV疫苗接种手册,宣教人群广泛涵盖全体市民,宣教内容包括HPV疫苗接种、两癌防控等知识。

(3) 鄂尔多斯市

 

基本情况

鄂尔多斯市2022年度GDP为5613.44亿元,全国地级市第45位。2021年,鄂尔多斯市出台了《健康城市建设推动健康鄂尔多斯行动创新模式工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

2020年8月,鄂尔多斯市在准格尔旗率先开展HPV疫苗免费接种项目。目标人群为全市当年13-18岁在校且无HPV疫苗接种史女生。免疫程序为进口二价0-1-6三剂次,

2023年起调整为13-14岁女孩0-6二剂次。资助政策为疫苗免费,自付20元/剂接种费。组织方式为疫苗接种服务中心根据任务安排联系学校,有规划的通知适龄女孩前来完成HPV疫苗接种。截至2022年11月,目标人群首针接种率接近70%[16]。

2022年8月,启动准格尔旗和达拉特旗高三女生接种四价和九价HPV疫苗的试点工作,利用暑假时间展开接种,力争在2023年年底达成90%的接种目标[17]。自鄂尔多斯之后,由政府主导的HPV疫苗惠民行动在多地等涌现。值得注意的是,近年来多主体参与到HPV疫苗支持项目,如慈善总会、医院、妇联等为主体单位牵头组织开展了一些公益活动。

宣传推动

鄂尔多斯市开展多形式、多载体的健康教育宣传。形式包括讲座、知晓日、义诊咨询、专题课程、专题活动等,载体包括宣传册、宣传栏、展板、电视、微信、视频号、抖音平台等,宣教人群广泛涵盖在校女孩及监护人,适龄女性及全体市民。宣教内容包括HPV疫苗接种、两癌防控、其它女性常见疾病防控等。

(4) 西安市

 

基本情况

西安市2022年度GDP为11486.51亿元,排名全国第22位。2021年,西安市出台了《西安市健康城市建设推动健康中国行动创新模式试点宫颈癌综合防治工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为全市年龄满13周岁(初中)在校女生。免疫程序为国产二价0-6二剂次,进口二价0-1-6三剂次,进口四价和进口九价0-2-6三剂次。接种政策为自愿自费。各区(县)合理设立HPV疫苗专项疫苗接种门诊承担接种任务,并及时将接种信息统一录入儿童免疫规划信息平台。

宣传推动

西安市出台了《西安市宫颈癌综合防治宣传方案》(市健办发〔2022〕12号)。通过媒体宣传、社区活动、义诊等形式,宣传册、宣传栏、展板、电视、微信公众号、报纸等载体普及宫颈癌防治相关知识。

(5) 西藏自治区

 

基本情况

西藏自治区2022年度GDP为2132.64亿元,经济总量整体规模相对其他省份较小,人均GDP处于全国中等偏下水平。2022年出台《西藏自治区妇女“两癌”综合防治工作实施方案》等系列政策推动适龄女孩HPV疫苗接种。

接种政策及效果

目标人群为13-14岁在校女生。免疫程序为国产二价0-6二剂次。资助政策为免费。由学校组织,接种者在商定接种时间携带个人身份证明材料与法定监护人一同前往定点接种单位接种。

宣传推动

充分利用网络、电视、广播、报刊等媒介,以群众喜闻乐见的宣传方式,对适龄在校女生HPV疫苗接种工作的意义及内容进行广泛宣传。

近年来各地HPV疫苗惠民项目信息

“疾病负担”指标解读

疾病负担(burden of disease, BOD)是指疾病造成的失能(伤残)、生活质量下降和过早死亡对健康和社会造成的总损失,包括疾病的流行病学负担和经济负担两个方面。

 

在疾病的流行病学方面,衡量疾病负担的常用指标包括传统指标和综合指标。

 

传统指标

传统疾病负担的衡量指标包括:用于描述和反映健康状况与水平的常规指标,如死亡人数、伤残人数和患病人数等绝对数指标;以及用来比较不同特征人群疾病分布差异的指标,如发病率、伤残率、患病率、死亡率、门诊和住院率等相对数指标。

 

上述传统疾病负担的衡量指标基本上只考虑了人口的生存数量,而忽略了生存质量,不够全面;但优势在于资料相对计算方便,结果直观,可用于各种疾病的一般性描述。

 

综合指标

疾病负担不等同于死亡人数,综合指标弥补了传统指标的单一性,且可以让各种不同疾病造成的负担之间相互比较。

 

潜在寿命损失年(YPLL):通过疾病造成的寿命损失来估计疾病负担的大小。但忽略了疾病造成的失能对生存质量的影响。

 

伤残调整寿命年(DALYs):将死亡和失能相结合,用一个指标来描述疾病的这两方面的负担。它包括因早死造成健康生命年的损失(YLL)和因伤残造成健康生命年的损失(YLD),即DALY=YLL+YLD。目前,DALY是国内外一致公认的最具代表性、运用最多的疾病负担评价指标。

 

健康期望寿命(HALE):指具有良好健康状态的生命年以及个体在比较舒适的状态下生活的平均预期时间,综合考虑生命的质量和数量两方面。

 

 

随着疾病负担研究的深入,其测量范围从流行病学负担扩大到经济负担。

 

疾病经济负担是由于发病、伤残(失能)和过早死亡给患者本人、家庭以及社会带来的经济损失,和由于预防治疗疾病所消耗的经济资源。

详细见:疾病的“经济负担”怎么计算?

 

参考资料:

陈文. 卫生经济学 [M]. 人民卫生出版社. 2017.

李茜瑶,周莹,黄辉等.疾病负担研究进展[J].中国公共卫生,2018,34(05):777-780.

什么是“年龄标化”?

在流行病学研究中,年龄是多种疾病的危险因素。以发病率为例,该指标反映了一定时期内,特定人群中癌症新发病例的情况。由于年龄是癌症发生的一个重要影响因素,年龄越大,发病率就越高。

 

如果两个国家的人群年龄结构相差很大,例如A市老年人口比例更大,B市年轻人口占比更高,直接比较两地癌症发病率的高低,我们不能确定发病率较高的市,是因为年龄构成不同还是因为其他影响因素(如饮食习惯、环境等)所导致。因此,需要用“年龄标化”的统计学方法,进一步处理数据,排除年龄影响因素的干扰,再来比较两地的发病率数据。

 

以发病率为例,即把原始数据套到一个“标准年龄结构人群里”,计算出”年龄标化发病率“,这样人群结构不同的A市和B市,就能在同一个指标尺度下进行“发病率”比较。年龄标化通常有“中标率”,即我国各地基于某一年份的中国人口年龄结构构成作为标准计算,国内不同地区的疾病数据比较采用的是“中标率”;另一种是“世标率”,即用世界标准人口构成机型标化计算,适用于国与国之间的指标比较。

 

同样地,以死亡率为例,应特别注意各之间地人口构成的差异。用标准化死亡率进行比较才能得出正确结论。如甲、乙两地在未标化前的肺癌死亡率相同,但实际上乙地人群的肺癌死亡率要明显地高于甲地,其原因在于甲地男性老年人口居多,而肺癌的死亡率又与年龄和性别有关,所以用未标化率进行比较时,就会得出甲乙两地肺癌死亡率相同的错误结论。

 

参考资料:

 

张科宏教授:年龄标化的患病率 – 丁香公开课 (dxy.cn)

科学网—癌症(粗)发病率与标化发病率的区别 – 杨雷的博文 (sciencenet.cn)

WHO年龄标化死亡率定义及计算方法

沈洪兵,齐秀英. 流行病学 [M]. 人民卫生出版社. 2015.

疾病的“经济负担”怎么计算?

疾病经济负担是由于发病、伤残(失能)和过早死亡给患者本人、家庭以及社会带来的经济损失,和由于预防治疗疾病的费用。通过计算疾病的经济负担,可以从经济层面上研究或比较不同疾病对人群健康的影响。

总疾病经济负担包括直接疾病经济负担、间接疾病经济负担和无形疾病经济负担。

直接经济负担:指直接用于预防和治疗疾病的总费用,包括直接医疗经济负担和直接非医疗经济负担两部分。直接医疗经济负担是指在医药保健部门购买卫生服务的花费,主要包括门诊费(如挂号费、检查费、处置费、诊断费、急救费等)、住院费(如手术费、治疗费等)和药费等。直接非医疗经济负担包括和疾病有关的营养费、交通费、住宿费、膳食费、陪护费和财产损失等。

间接经济负担:指由于发病、伤残(失能)和过早死亡给患者本人和社会带来的有效劳动力损失而导致的经济损失。具体包括:劳动工作时间损失、个人工作能力和效率降低造成的损失、陪护病人时损失的劳动工作时间、精神损失等。

无形经济负担:指患者及亲友因疾病在心理、精神和生活上遭受的痛苦、悲哀、不便等生活质量下降而产生的无形损失。

 

参考资料:

陈文. 卫生经济学 [M]. 人民卫生出版社. 2017.

李茜瑶,周莹,黄辉等.疾病负担研究进展[J].中国公共卫生,2018,34(05):777-780.