Immunogenicity, Efficacy, and Safety of Rotavirus Vaccines

Immunogenicity, Efficacy, and Safety of Rotavirus Vaccines

Vaccination against rotavirus is currently the most cost-effective and efficient method for preventing rotavirus infections. In 2009, the World Health Organization (WHO) recommended that all countries include oral rotavirus vaccines in their routine immunization programs1. Studies have shown that the currently available rotavirus vaccines are generally safe, although their effectiveness evidence varies across different countries and regions. Overall, rotavirus vaccines demonstrate high efficacy and effectiveness in those developed countries in Europe and the Americas, whereas their performance in developing countries in Africa and Asia remains suboptimal 2-4.

Types of Vaccines

As of now, seven rotavirus vaccines have been approved globally5,6. These include Rotarix (GlaxoSmithKline, Belgium), RotaTeq (Merck & Co., USA), Rotavac (Bharat Biotech, India), Rotasiil (Serum Institute of India), LLR (Lanzhou Institute of Biological Products, China), LLR3 (Lanzhou Institute of Biological Products, China), and Rotavin-M1 (Polyvac, Vietnam). Among these, RotaTeq, Rotarix, Rotavac, and Rotasiil have received WHO prequalification, while LLR, LLR3, and Rotavin-M1 are licensed for use in select countries (Table 4.1). By 2023, Rotarix was being used in 75 countries and RotaTeq in 24 countries; 11 countries introduced both RotaTeq and Rotarix. Additionally, Rotavac was used in 11 countries, Rotasiil in 6 countries, and a combination of Rotasiil and Rotavac in 1 country. Two countries have announced plans to introduce rotavirus vaccines but have not yet specified products7.

Table 4.1 Overview of Current Rotavirus Vaccine Products

VaccineManufacturerSerotype/StrainYear ApprovedImmunization ScheduleDosage/ FormIntro Country Number
RotarixGlaxoSmithKline, BelgiumG1P[8]20052 doses, starting at 6 weeks, 4-week interval; completed by 24 weeks1.5 mL/dose, liquid75 countries
RotaTeqMerck & Co., USAG1, G2, G3, G4, P[8]20063 doses, starting at 6–12 weeks, 4–10-week interval, completed by 32 weeks2 mL/dose, liquid24 countries
RotavacBharat Biotech, IndiaG9P[11]20143 doses, starting at 6 weeks, 4-week interval, completed by 8 monthsLiquid (frozen and non-frozen)11 countries
RotasiilSerum Institute of IndiaG1, G2, G3, G4, G920173 doses, starting at 6 weeks, 4-week interval, completed within 1 year2.5 mL/dose, lyophilized; 2 mL/dose, liquid6 countries
LLRLanzhou Institute of Biological Products, ChinaG10P[15]20003 doses, starting at 2 months to 3 years, 1 dose annually3 mL/dose, liquidChina
LLR3Lanzhou Institute of Biological Products, ChinaG2, G3, G420233 doses, starting at 6–13 weeks, 1-month interval, 3rd dose by 32 weeks2 mL/dose, liquidChina
Rotavin-M1Polyvac, VietnamG1P[8]20122 doses, starting at 6 weeks, completed by 6 months, minimum 1-month interval2 mL/dose, liquid (frozen and non-frozen)Vietnam

Data Source:Rotavirus Gastroenteritis Expert Consensus Writing Group. Expert consensus on immunoprevention of rotavirus gastroenteritis in children (2024 edition). Chinese Journal of Preventive Medicine. 2024;58(0):1-33.DOI:10.3760/cma.j.cn112150-20231220-00472
He LH, Li JS, Duan ZJ. Progress in research on effectiveness and safety of rotavirus vaccines in China. Chinese Journal of Vaccines and Immunization. 2023;29:239–245. DOI: 10.19914/j.CJVI.2023041

Figure 4.1: Countries Using WHO-Prequalified Rotavirus Vaccines as of 2023
Source: VIEW-hub

Safety, Efficacy, and Effectiveness

Current evidence indicates two widely used rotavirus vaccines’ -Rotarix & RotaTeq- efficacy and effectiveness vary across different countries and regions, which may be attributed to differences in economic levels, lifestyles, genetic backgrounds, and prevalent strains5. All approved Rota vaccine products have demonstrated good safety profiles, without reports of severe adverse events following the immunization12-14,31-33. In general, rotavirus vaccines exhibit higher efficacy and effectiveness in low-mortality regions (primarily the developed countries) compared to high-mortality regions3,4.

The lower effectiveness of RotaTeq in high-mortality regions may be due to several factors: (1) the predominance of the P[6] genotype in some high-mortality regions, which is not covered by RotaTeq; (2) lower economic levels in high-mortality regions, leading to insufficient vaccine coverage as rotavirus vaccination is not included in national immunization programs; and (3) poorer healthcare and nutritional conditions in high-mortality regions, which prolong the course of rotavirus gastroenteritis (RVGE) and increase the severity and mortality of the disease15. Other factors, such as malnutrition (zinc and vitamin A/D deficiencies), gut microbiota, multiple infections, immature infant immune systems, environmental enteropathy, maternal antibodies (via placenta or breast milk), and genetic factors, may also contribute to the varying immunogenicity of rotavirus vaccines across countries16,35. Additionally, the protection of rotavirus vaccine declines more rapidly over time in high-mortality regions17.

Furthermore, evidence suggests that high vaccination coverage among infants and young children can provide herd protection to older populations. This highlights the potential for broader societal benefits as immunization programs are established. Increasing vaccination coverage and continued investment in comprehensive rotavirus vaccination programs may benefit public health and further reduce the clinical and economic burden of the disease30.

Oral Pentavalent Reassortant Rotavirus Vaccine (Vero Cell)

RotaTeq (RV5), an oral pentavalent rotavirus vaccine, was approved in the United States in February 2006 and subsequently used in several European countries. This vaccine consists of five human-bovine (WC3) reassortant strains (G1, G2, G3, G4, and P1A[8]) and is in a three-dose series administered to infants aged 6–32 weeks. The first dose is given at 6–12 weeks of age, with subsequent doses spaced 4–10 weeks apart, and the third dose must be completed by 32 weeks of age. RotaTeq received WHO prequalification in 200819 and was launched in China market in 2018.  According to data from Shanghai CDC, the procurement price for this vaccine in Shanghai is 285.5 CNY per dose.

IgA is considered the most acceptable laboratory parameter for assessing the immunogenicity of rotavirus vaccines. It is commonly used as a serological measure in clinical trials. Studies on natural rotavirus infections and vaccine trials have shown a correlation between serum rotavirus antibodies and vaccine protection. A randomized controlled trial in China reported a seroconversion rate of 89.4% for serum IgA following RotaTeq vaccination18. Another clinical trial evaluated the efficacy and safety of RotaTeq when co-administered with other vaccines, showing that RotaTeq provided 69.3% protection against RVGE of any severity caused by any serotype and 78.9% protection against severe RVGE caused by any serotype14. China local studies have consistently found that three doses of RotaTeq are highly effective against rotavirus-induced diarrhea. A study in Shanghai reported RotaTeq’s efficacy of 85% (95% CI: 50%–95%) in children aged 14 weeks to 4 years and 97% (95% CI: 83%–100%) in children aged 14 weeks to 2 years, primarily against G8P[8], G9P[8], and G2P[4] strains, which accounted for 78.95%, 18.42%, and 2.63% of prevalent strains, respectively36. In Beijing, the vaccine effectiveness (VE) of three doses of RotaTeq was 90.4% (95% CI: 28.8%–98.7%) against group A rotavirus diarrhea37.

A study conducted in Chengdu found that the introduction of RotaTeq led to a delayed onset of the rotavirus season, a shortened epidemic duration (from 20 to 7 weeks), and a significantly reduced peak positivity rate38. Since its approval in China in 2018, post-marketing surveillance data have shown no severe adverse events associated with large-scale RotaTeq vaccination19,20. Furthermore, China’s Adverse Events Following Immunization (AEFI) surveillance data for 2020 reported a total of 226,320 AEFI cases, with an overall AFEI reporting rate of 40.94 per 100,000 doses, and 14.37 per 100,000 doses for RotaTeq (RV5 in the Figure) 29.

Figure 4.2: AEFI Reporting Rates for All Post-Marketing and Emergency-Use Vaccines in China in 2020
Source: Zhang LN, Li KL, Li Y, et al. Surveillance of adverse events following immunization in China,2020. Chinese Journal of Vaccines and Immunization. 2022;28(2):208–218. DOI:10.19914/j.CJVI.2022041

Oral Rotavirus Live Vaccine

The rotavirus vaccine developed by the Lanzhou Institute of Biological Products in China, known as LLR, is marketed under the brand name “LuoTeWei.” LLR was introduced in China in 2001 but has limited use since rotavirus vaccine has not been included in the national immunization program. The procurement price for LLR in Shanxi Province is 138 CNY per dose in 2024.

Since its introduction in 2001, over 50 million doses of LLR have been administered. Clinical evidence shown that LLR provides certain extent of protection against human rotavirus infections. Previous studies in China have reported lower adverse event rates in LLR recipients compared to control groups, with no cases of intussusception or death, indicating a good safety profile of the vaccine. The incidence of diarrhea was lower in the LLR group than in the control group21-24. Prospective cohort studies and meta-analyses have shown that LLR provides 69%–72% protection against RVGE and severe RVGE, comparable to the efficacy of rotavirus vaccines produced by GlaxoSmithKline and Merck21,22. Retrospective studies based on case data and vaccination records have found that one dose of LLR provides protection for children under 5 years of age, particularly against severe RVGE. These studies generally recommend completing the full vaccination schedule as early as possible to maximize protection39-41. One study in Beijing from 2015 to 2017 reported adjusted vaccine effectiveness (VE) estimates of 36.2% (95% CI: 4.7%–57.3%) and -1.6% (95% CI: -224.5%–68.2%) for children aged 2–35 months and 36–59 months, respectively42. A study in Guangzhou from 2002 to 2004 found that the effectiveness of 1 dose LLR was 60.0% in children aged 2–11 months, 80.9% in those aged 12–23 months, and 50% in those aged 24–35 months43.

A study in Shaanxi Province found that Rotavirus vaccination (LLR or RotaTeq) significantly reduced the duration and frequency of vomiting in hospitalized children under 5 years of age44. Another study using surveillance data from four cities in Guangdong Province conducted a test-negative case-control study to compare the effectiveness of LLR and RotaTeq against RVGE in hospitalized children from 2020 to 2023. The results showed that both vaccines effectively prevented RVGE, including cases caused by the G8P[8] genotype. Three doses of RotaTeq provided strong protection, while two doses of LLR were also an effective strategy for preventing rotavirus infections25.

Table 4.2 Comparison of LLR and RotaTeq Vaccine Efficacy by Dose and Severity

VaccineDosesEfficacy Against Any RVGE (%)Efficacy Against Severe RVGE (%)
RotaTeq151.767.2
237.674
364.186.6
LLR138.757.7
274.673.4
358.8-27.8

Oral Trivalent Reassortant Rotavirus Vaccine (Vero Cell)

LLR3, a human-lamb reassortant trivalent rotavirus vaccine developed by the Lanzhou Institute of Biological Products, contains G2, G3, and G4 serotypes. A randomized, double-blind, placebo-controlled multicenter study demonstrated that LLR3 has good immunogenicity and protective efficacy against RVGE of any severity RVGE, severe RVGE, and hospitalizations caused by any serotype in Chinese infants14. LLR3 also showed cross-protection against other RV serotypes, particularly G9, with an efficacy of 70.3% (95% CI: 59.9%–77.9%) against severe RVGE caused by G9. Clinical trials indicated that LLR3 is safe for healthy children aged 2–35 months, with an adverse effect rate of 21.43%. Common adverse reactions included fever, vomiting, and diarrhea, with rates similar to other oral rotavirus vaccines, and no systemic severe adverse reactions were observed . LLR3 was approved for use in China in 202323. In 2025, the procurement price of LLR3 is 218 CNY per dose in Xinjiang Autonomous Region.

RV3-BB Vaccine

Among the oral rotavirus vaccines in development, the most ready candidate is RV3-BB, developed by PTBioFarma in Indonesia. This vaccine is based on a naturally attenuated neonatal strain of RV G3P[6] and is currently in clinical trials3,24. Phase I trials have shown that RV3-BB is well-tolerated in adults, children, and neonates, with good immunogenicity observed in neonates after three doses25.

Oral Hexavalent Recombinant Rotavirus Vaccine (HRV6)
HRV6, developed by the Wuhan Institute of Biological Products, contains six serotypes: G1, G2, G3, G4, G8, and G9, covering 99.6% of the G serotypes of group A rotavirus5. Early clinical trials of HRV6 demonstrated good tolerance in both adults and infants, with promising immunogenicity in infants26. A randomized, double-blind, placebo-controlled, multicenter Phase III clinical trial was conducted in Hebei, Hunan, Zhejiang Province, and Guangxi Zhuang Autonomous Region. The results showed no significant differences in the incidence of adverse events and serious adverse events between the HRV6 group and the placebo group27.

Overview of Rotavirus Vaccines in Development in China

Table 4.3 Overview of Rotavirus Vaccines in Development in China

Vaccine NameManufacturerCovered SerotypesRegistration CategoryDevelopment Progress
Tri-valent Rotavirus Gene Reassortant VaccineLanzhou Institute of Biological ProductsG2, G3, G41Production application*
Oral Hexavalent Recombinant Rotavirus Live Vaccine (Vero Cell)Wuhan Institute of Biological ProductsG1, G2, G3, G4, G8, G91Phase III completed, Market application submitted
Human Rotavirus Live Attenuated VaccineGSKG1P[8]3.1Phase III completed
Reassortant Tri-valent Rotavirus Subunit VaccineMicocon BioP[4], P[6], P[8]1.2Phase II
Monovalent Rotavirus Inactivated VaccineKunming Institute of Biological ProductsG1P[8]Phase II
Oral Hexavalent Human-Cow Reassortant RV Live Attenuated Vaccine (Vero Cell)Sinovac BiotechG1, G2, G3, G4, G9, P1A[8]1Phase I
Oral Pentavalent Recombinant Rotavirus Live Vaccine (Vero Cell)Kangtai BiotechG1, G2, G3, G4, G93.2Phase I
Rotavirus Inactivated Vaccine (Vero Cell)Chinese Academy of Medical Sciences, Institute of BiologyG1, G2, G3, G4, G91Phase I
Rotavirus Inactivated VaccineZhifei BiologicalG1P[8]1Phase I
Freeze-Dried Quadrivalent Oral Rotavirus Live Vaccine (FRhL-2 Cell)Bravovax Co.1Approved for clinical use
Wa-VP4* Candidate Rotavirus VaccineXiamen Innovax BiotechPreclinical
Rotavirus mRNA-LNP VaccineChinese Academy of Medical Sciences, Institute of BiologyPreclinical

Data Source: Company announcements, Huajing Industry Research Institute, and the Clinical Research Database of the National Medical Products Administration.
*Approved for domestic market in April 2023.

Overview of Rotavirus Vaccines in Development in Other Countries

Table 4.4 Overview of Rotavirus Vaccines in Development Internationally

Vaccine NameManufacturer/DeveloperVaccine CharacteristicsCovered SerotypesDevelopment Progress
RV3-BBPT BioFarma, Bandung, IndonesiaBased on human neonatal live-attenuated strain; neonatal (“birth dose”) and infant schedules being evaluatedG3P[6]Phase 2/3; Phase 2b completed
VP8 Subunit Protein VaccinePATH Rotavirus Vaccine Program, USASubunit vaccine based on recombinant proteins; Parenteral administration being evaluatedTrivalent truncated VP8: P[4], P[6], P[8]Phase 3
Tetravalent UK-BRVShanta BiotechnicsBased on live-attenuated bovine-human reassortant strainG1-4Phase 3, development abandoned
Pentavalent UK-BRVInstituto Butantan, BrazilBased on live-attenuated bovine-human reassortant strainG1-4, G9Phase 1
Hexavalent UK-BRV*Wuhan Institute of Biological Products, ChinaBased on live-attenuated bovine-human reassortant strainG1-4, G8, G9Phase 2/3
Inactivated G1P[8] VaccineCDC, USA
Heat inactivated human strain; Parenteral administration being evaluated  
G1P[8]Preclinical; Animal studies
VP6-Norovirus VLPUniversity of TampereSubunit vaccine based on virus-like particles; Parenteral administration being evaluatedN/A; VP6 proteinPreclinical; Animal studies
Expressed V6 ProteinCincinnati Children’s Hospital Medical CenterSubunit vaccine based on recombinant proteins; Parenteral administration being evaluatedN/A; VP6 proteinPreclinical; Animal studies
VLP VP2/6(/7)Baylor College of MedicineSubunit vaccine based on virus-like particles; Parenteral administration being evaluatedN/A; VP2/6/7 proteinPreclinical; Animal studies

Data Source: Cates, J., Tate, J. E., & Parashar, U. Rotavirus vaccines: progress and new developments. Expert Opinion on Biological Therapy 22, 423–432 (2022).28
*Chinese product.

It has been suggested that the next-generation injectable rotavirus vaccines may offer higher protective efficacy, or the combination of oral and injectable vaccines may enhance effectiveness. Furthermore, the study emphasizes that co-administration of the next-generation injectable rotavirus vaccine with the DTP vaccine may effectively improve vaccination coverage and is considered a cost-effective choice. The study supports the necessity of developing injectable rotavirus vaccines45.

Content Editor: Siqi Jin, Ziqi Liu

Page Editor:Ziqi Liu


References

  1. Vaccine in National Immunization Programme Update. https://cdn.who.int/media/docs/default-source/immunization/hpv/vaccineintrostatus.pdf
  2. Burnett, E., Parashar, U. D. & Tate, J. E. Real-world Effectiveness of Pentavalent Rotavirus Vaccine in Shanghai of rotavirus vaccines, 2006–19: a literature review and meta-analysis. The Lancet Global Health 8, e1195–e1202 (2020).
  3. Cárcamo-Calvo, R., Muñoz, C., Buesa, J., Rodríguez-Díaz, J. & Gozalbo-Rovira, R. The Rotavirus Vaccine Landscape, an Update. Pathogens 10, 520 (2021).
  4. Clark, A. et al. Efficacy of live oral rotavirus vaccines by duration of follow-up: a meta-regression of randomised controlled trials. The Lancet Infectious Diseases 19, 717–727 (2019).
  5. Rotavirus Gastroenteritis Expert Consensus Writing Group. Expert consensus on immunoprevention of rotavirus gastroenteritis in children (2024 edition). Chinese Journal of Preventive Medicine. 2024;58(0):1-33. DOI:10.3760/cma.j.cn112150-20231220-00472
  6. National Medical Products Administration. Data query : Registration No. S20230022. https://www.nmpa.gov.cn/datasearch/search-info.html?nmpa=aWQ9YjFjOWVlMTQyOGJhMzkyZTFmMTdiN2ZkYjk0M2M1ZjQmaXRlbUlkPWZmODA4MDgxODNjYWQ3NTAwMTg0MDg4MWY4NDgxNzlm.
  7. VIEW-hub. (n.d.). Rotavirus vaccine. Retrieved October 11, 2024, from https://view-hub.org/vaccine/rota
  8. https://www.cdc.gov/vaccines/vpd/rotavirus/hcp/index.html
  9. https://www.path.org/our-impact/media-center/india-made-rotavirus-vaccine-achieves-world-health-organization-prequalification/
  10. https://www.path.org/our-impact/media-center/global-rotavirus-vaccine-options-expand-world-health-organization-prequalification-new-vaccine-india/
  11. Lanzhou Institute of Biological Products Co., Ltd. Package insert of Reassortant Rotavirus Vaccine, live, Oral, Trivalent (Vero Cell)  . Available from: https://www.vacmic.com/htm/20246/13_2861.htm
  12. Giaquinto, C. et al. Summary of effectiveness and impact of rotavirus vaccination with the oral pentavalent rotavirus vaccine: A systematic review of the experience in industrialized countries. Human Vaccines 7, 734–748 (2011).
  13. Lawrence, J. et al. Safety and immunogenicity of pentavalent rotavirus vaccine in a randomized, double-blind, placebo-controlled study in healthy elderly subjects. Human Vaccines & Immunotherapeutics 10, 2247–2254 (2014).
  14. Xia, S. et al. Efficacy, immunogenicity and safety of a trivalent live human-lamb reassortant rotavirus vaccine (LLR3) in healthy Chinese infants: A randomized, double-blind, placebo-controlled trial. Vaccine 38, 7393–7400 (2020).
  15. Wei YH, et al. Meta-analysis of the protective effect and safety of RotaTeq vaccine against rotavirus gastroenteritis in children in high mortality areas in the world. Chinese Journal of Experimental and Clinical Virology. 2023;37:106–111.
  16. Desselberger, U. Differences of Rotavirus Vaccine Effectiveness by Country: Likely Causes and Contributing Factors. Pathogens 6, 65 (2017).
  17. Dadonaite, B., Ritchie, H. & Roser, M. Rotavirus vaccine – an effective tool that prevents children dying from diarrhea. Our World in Data (2024).
  18. Mo, Z. et al. Immunogenicity of pentavalent rotavirus vaccine in Chinese infants. Vaccine 37, 1836–1843 (2019).
  19. Huang WB, Guo WF, Sun YS, Zhu YQ. Safety investigation of oral pentavalent reassortant live attenuated rotavirus vaccine in infants and young children in Conghua District, Guangzhou. China Rural Health. 2020;12:75–77.
  20. Fang T, Zhao XF, Han HT, Ni HX, Zhang L. Active surveillance of adverse events following immunization with pentavalent live human-bovine reassortant rotavirus vaccine among 6–12-week-old infants in Ningbo city. Chinese Journal of Vaccines and Immunization. 2021;27:580–583.
  21. Li MQ, Lü BJ, Shen PY. The meta-analysis of protective effect and safety of oral rotavirus vaccine (live). Chinese Journal of Disease Control & Prevention. 2015;19:1038–1041, 1056.
  22. Cao B, Wang XH, You ZY, Tan SQ, Hu GF. The meta-analysis of vaccine effectiveness of Lanzhou lamb rotavirus vaccine. Chinese Journal of Disease Control & Prevention. 2013;17(3):203–207. DOI:10.3760/cma.j.issn.1673-4092.2013.03.003.
  23. Xia S, Du J, Su J, et al. Efficacy, immunogenicity and safety of a trivalent live human-lamb reassortant rotavirus vaccine (LLR3) in healthy Chinese infants: A randomized, double-blind, placebo-controlled trial. Vaccine. 2020;38(46):7393-7400. doi:10.1016/j.vaccine.2020.04.038
  24. Glass, R. I., Tate, J. E., Jiang, B. & Parashar, U. The Rotavirus Vaccine Story: From Discovery to the Eventual Control of Rotavirus Disease. J Infect Dis 224, S331–S342 (2021).
  25. Yi, Y., Liu, J., Zhang, Y. et al. Effectiveness of Lanzhou Lamb Rotavirus Vaccine and RotaTeq Against Hospitalized Rotavirus Infections Among Children During 2020-2023 in Guangdong Province, China: A Test-Negative Case-Control Study. Infect Dis Ther 13, 2301–2317 (2024). https://doi.org/10.1007/s40121-024-01040-y
  26. At Thobari, J. et al. Safety and immunogenicity of human neonatal RV3 rotavirus vaccine (Bio Farma) in adults, children, and neonates in Indonesia: Phase I Trial. Vaccine 39, 4651–4658 (2021).
  27. Safety and immunogenicity of a novel oral hexavalent rotavirus vaccine a phase I clinical trial.pdf.
  28. Wu, Z. et al. Efficacy, safety and immunogenicity of hexavalent rotavirus vaccine in Chinese infants. Virologica Sinica 37, 724–730 (2022).
  29. Cates, J., Tate, J. E. & Parashar, U. Rotavirus vaccines: progress and new developments. Expert Opin Biol Ther 22, 423–432 (2022).
  30. Zhang LN, Li KL, Li Y, et al. Surveillance of adverse events following immunization in China, 2020. Chinese Journal of Vaccines and Immunization. 2022;28(2):208–218. DOI:10.19914/j.CJVI.2022041.
  31. Bencina G, Costantino C, Mameli C, Sabale U, Murtagh J, Newman R, Ahern A, Bhaila R, Sanchez AO, Martinon-Torres F, Carias C. Real-world impact of rotavirus vaccination in European healthcare settings: a systematic literature review. Expert Rev Vaccines. 2022 Aug;21(8):1121-1136. doi: 10.1080/14760584.2022.2075851. Epub 2022 Jun 16. PMID: 35708263.
  32. Sun ZW, Fu Y, Lu HL, Yang RX, Goyal H, Jiang Y, Xu HG. Association of Rotavirus Vaccines With Reduction in Rotavirus Gastroenteritis in Children Younger Than 5 Years: A Systematic Review and Meta-analysis of Randomized Clinical Trials and Observational Studies. JAMA Pediatr. 2021 Jul 1;175(7):e210347. doi: 10.1001/jamapediatrics.2021.0347. Epub 2021 Jul 6. PMID: 33970192; PMCID: PMC8111566.
  33. Gidengil C, Goetz MB, Newberry S, Maglione M, Hall O, Larkin J, Motala A, Hempel S. Safety of vaccines used for routine immunization in the United States: An updated systematic review and meta-analysis. Vaccine. 2021 Jun 23;39(28):3696-3716. doi: 10.1016/j.vaccine.2021.03.079. Epub 2021 May 25. PMID: 34049735.
  34. Pereira P, Benninghoff B, Moerman L. Systematic literature review on the safety and immunogenicity of rotavirus vaccines when co-administered with meningococcal vaccines. Hum Vaccin Immunother. 2020 Nov 1;16(11):2861-2872. doi: 10.1080/21645515.2020.1739485. Epub 2020 Apr 16. PMID: 32298219; PMCID: PMC7746238.
  35. Raboba JL, Rahajamanana VL, Rakotojoelimaria HE, Masembe YV, Martin PR, Weldegebriel GG, Diallo AO, Burnett E, Tate JE, Parashar UD, Mwenda JM. Monovalent rotavirus vaccine effectiveness and long-term impact among children< 5 years old in Antananarivo, Madagascar, 2010–2022. Vaccine. 2024 Dec 2;42(26):126321.
  36. Ma W, Wei Z, Guo J, et al. Effectiveness of Pentavalent Rotavirus Vaccine in Shanghai, China: A Test-Negative Design Study. J Pediatr. 2023;259:113461. doi:10.1016/j.jpeds.2023.113461
  37. Tian, Y., Shen, L., Li, W., Yan, H., Fu, J., Liu, B., Wang, Y., Jia, L., Li, G., Suo, L., Zhang, D., Gao, Z., & Wang, Q. (2024). Major changes in prevalence and genotypes of rotavirus diarrhea in Beijing, China after RV5 rotavirus vaccine introduction. Journal of medical virology96(5), e29650. https://doi.org/10.1002/jmv.29650
  38. Xiao G, Zhu T, Wang Z, et al. Pentavalent Rotavirus Vaccine Coverage and Trends in Rotavirus Detection Before and After This Vaccination in Chengdu, China. Pediatr Infect Dis J. 2024;43(11):e397-e399. DOI: 10.1097/INF.0000000000004441
  39. Li J, Zhang Y, Yang Y, Liang Z, Tian Y, Liu B, Gao Z, Jia L, Chen L, Wang Q. Effectiveness of Lanzhou lamb rotavirus vaccine in preventing gastroenteritis among children younger than 5 years of age. Vaccine. 2019 Jun 12;37(27):3611-6.
  40. Fu C, Wang M, Liang J, He T, Wang D, Xu J. Effectiveness of Lanzhou lamb rotavirus vaccine against rotavirus gastroenteritis requiring hospitalization: a matched case-control study. Vaccine. 2007 Dec 17;25(52):8756-61.
  41. Fu C, He Q, Xu J, Xie H, Ding P, Hu W, Dong Z, Liu X, Wang M. Effectiveness of the Lanzhou lamb rotavirus vaccine against gastroenteritis among children. Vaccine. 2012 Dec 17;31(1):154-8.
  42. Li J, Zhang Y, Yang Y, Liang Z, Tian Y, Liu B, Gao Z, Jia L, Chen L, Wang Q. Effectiveness of Lanzhou lamb rotavirus vaccine in preventing gastroenteritis among children younger than 5 years of age. Vaccine. 2019 Jun 12;37(27):3611-6.
  43. Fu C, Wang M, Liang J, He T, Wang D, Xu J. Effectiveness of Lanzhou lamb rotavirus vaccine against rotavirus gastroenteritis requiring hospitalization: a matched case-control study. Vaccine. 2007 Dec 17;25(52):8756-61.
  44. Zhu N, Zhang Y, Chen S, Feng X, Li H, Hu WJ, Zhang C, Cao L, Zhang SB. Effectiveness of rotavirus vaccine in preventing rotavirus infection and clinical symptoms among hospitalized children under five years of age with diarrhea. Chinese Journal of Vaccines and Immunization. 2024;30(4):447–450.
  45. Hausdorff WP, Price J, Debellut F, Mooney J, Torkelson AA, Giorgadze K, Pecenka C. Does anybody want an injectable rotavirus vaccine, and why? Understanding the public health value proposition of next-generation rotavirus vaccines. Vaccines. 2022 Jan 20;10(2):149.
  46. Li J, Zhang Y, Yang Y, et al. Effectiveness of Lanzhou lamb rotavirus vaccine in preventing gastroenteritis among children younger than 5 years of age. Vaccine. 2019;37(27):3611-3616. doi:10.1016/j.vaccine.2019.03.069

代表性地区的基本情况、接种政策及效果、宣传推动情况

(1) 成都市

 

基本情况

成都市2022年度GDP为20817.5亿元,排名全国城市第七。成都市出台了《健康城市建设推动健康中国行动创新模式成都市宫颈癌综合防控试点工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为13-14岁在校且无HPV疫苗接种史女生。免疫程序为国产二价0-6二剂次、进口二价0-1-6三剂次、进口四价0-2-6三剂次。资助政策为国产二价疫苗(沃泽惠)免费,其它疫苗补贴600元/人,并自付20元/剂接种费。疫苗接种按照属地化管理原则,由学校所在地预防接种单位负责。截至2022年1月,目标人群首针接种率达90.04%[14]。

宣传推动

成都市开展多形式、多载体的健康教育宣传。形式包括讲座、知晓日、义诊咨询、专题课程、专题活动等,载体包括宣传册、宣传栏、展板、电视、微信、视频号、抖音平台等,覆盖相关医疗机构300余、社区300余个、和公众场所90余个。面向适龄女孩及监护人、适龄女性及全体市民开展广泛宣教,宣传材料发放至近9万名群众,讲座活动覆盖近2万名群众。宣教内容包括HPV疫苗接种、两癌防控、其它女性常见疾病防控等。

(2) 济南市

 

基本情况

济南市2022年度GDP为12027.5亿元,位列全国城市排名20。2021年,济南市出台《健康城市建设推动健康中国行动创新模式试点一济南市宫颈癌综合防治工作方案(2021—2025年)》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为≤14周岁且无HPV疫苗接种史的在校七年级女生。免疫程序为国产二价0-6二剂次。资助政策免费接种。疫苗接种按照属地化管理原则,安排分班级分时段前往学校所在地的预防接种单位进行接种。截至2022年11月,目标人群首针接种率达
94.4%[15].

宣传推动

济南市开展多形式、多载体的健康教育宣传。形式包括采访、线上线下专题活动,载体包括网络媒体、纸媒、科普展板、宣传手册、子宫颈癌与HPV疫苗知识读本、济南HPV疫苗接种手册,宣教人群广泛涵盖全体市民,宣教内容包括HPV疫苗接种、两癌防控等知识。

(3) 鄂尔多斯市

 

基本情况

鄂尔多斯市2022年度GDP为5613.44亿元,全国地级市第45位。2021年,鄂尔多斯市出台了《健康城市建设推动健康鄂尔多斯行动创新模式工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

2020年8月,鄂尔多斯市在准格尔旗率先开展HPV疫苗免费接种项目。目标人群为全市当年13-18岁在校且无HPV疫苗接种史女生。免疫程序为进口二价0-1-6三剂次,

2023年起调整为13-14岁女孩0-6二剂次。资助政策为疫苗免费,自付20元/剂接种费。组织方式为疫苗接种服务中心根据任务安排联系学校,有规划的通知适龄女孩前来完成HPV疫苗接种。截至2022年11月,目标人群首针接种率接近70%[16]。

2022年8月,启动准格尔旗和达拉特旗高三女生接种四价和九价HPV疫苗的试点工作,利用暑假时间展开接种,力争在2023年年底达成90%的接种目标[17]。自鄂尔多斯之后,由政府主导的HPV疫苗惠民行动在多地等涌现。值得注意的是,近年来多主体参与到HPV疫苗支持项目,如慈善总会、医院、妇联等为主体单位牵头组织开展了一些公益活动。

宣传推动

鄂尔多斯市开展多形式、多载体的健康教育宣传。形式包括讲座、知晓日、义诊咨询、专题课程、专题活动等,载体包括宣传册、宣传栏、展板、电视、微信、视频号、抖音平台等,宣教人群广泛涵盖在校女孩及监护人,适龄女性及全体市民。宣教内容包括HPV疫苗接种、两癌防控、其它女性常见疾病防控等。

(4) 西安市

 

基本情况

西安市2022年度GDP为11486.51亿元,排名全国第22位。2021年,西安市出台了《西安市健康城市建设推动健康中国行动创新模式试点宫颈癌综合防治工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为全市年龄满13周岁(初中)在校女生。免疫程序为国产二价0-6二剂次,进口二价0-1-6三剂次,进口四价和进口九价0-2-6三剂次。接种政策为自愿自费。各区(县)合理设立HPV疫苗专项疫苗接种门诊承担接种任务,并及时将接种信息统一录入儿童免疫规划信息平台。

宣传推动

西安市出台了《西安市宫颈癌综合防治宣传方案》(市健办发〔2022〕12号)。通过媒体宣传、社区活动、义诊等形式,宣传册、宣传栏、展板、电视、微信公众号、报纸等载体普及宫颈癌防治相关知识。

(5) 西藏自治区

 

基本情况

西藏自治区2022年度GDP为2132.64亿元,经济总量整体规模相对其他省份较小,人均GDP处于全国中等偏下水平。2022年出台《西藏自治区妇女“两癌”综合防治工作实施方案》等系列政策推动适龄女孩HPV疫苗接种。

接种政策及效果

目标人群为13-14岁在校女生。免疫程序为国产二价0-6二剂次。资助政策为免费。由学校组织,接种者在商定接种时间携带个人身份证明材料与法定监护人一同前往定点接种单位接种。

宣传推动

充分利用网络、电视、广播、报刊等媒介,以群众喜闻乐见的宣传方式,对适龄在校女生HPV疫苗接种工作的意义及内容进行广泛宣传。

近年来各地HPV疫苗惠民项目信息

“疾病负担”指标解读

疾病负担(burden of disease, BOD)是指疾病造成的失能(伤残)、生活质量下降和过早死亡对健康和社会造成的总损失,包括疾病的流行病学负担和经济负担两个方面。

 

在疾病的流行病学方面,衡量疾病负担的常用指标包括传统指标和综合指标。

 

传统指标

传统疾病负担的衡量指标包括:用于描述和反映健康状况与水平的常规指标,如死亡人数、伤残人数和患病人数等绝对数指标;以及用来比较不同特征人群疾病分布差异的指标,如发病率、伤残率、患病率、死亡率、门诊和住院率等相对数指标。

 

上述传统疾病负担的衡量指标基本上只考虑了人口的生存数量,而忽略了生存质量,不够全面;但优势在于资料相对计算方便,结果直观,可用于各种疾病的一般性描述。

 

综合指标

疾病负担不等同于死亡人数,综合指标弥补了传统指标的单一性,且可以让各种不同疾病造成的负担之间相互比较。

 

潜在寿命损失年(YPLL):通过疾病造成的寿命损失来估计疾病负担的大小。但忽略了疾病造成的失能对生存质量的影响。

 

伤残调整寿命年(DALYs):将死亡和失能相结合,用一个指标来描述疾病的这两方面的负担。它包括因早死造成健康生命年的损失(YLL)和因伤残造成健康生命年的损失(YLD),即DALY=YLL+YLD。目前,DALY是国内外一致公认的最具代表性、运用最多的疾病负担评价指标。

 

健康期望寿命(HALE):指具有良好健康状态的生命年以及个体在比较舒适的状态下生活的平均预期时间,综合考虑生命的质量和数量两方面。

 

 

随着疾病负担研究的深入,其测量范围从流行病学负担扩大到经济负担。

 

疾病经济负担是由于发病、伤残(失能)和过早死亡给患者本人、家庭以及社会带来的经济损失,和由于预防治疗疾病所消耗的经济资源。

详细见:疾病的“经济负担”怎么计算?

 

参考资料:

陈文. 卫生经济学 [M]. 人民卫生出版社. 2017.

李茜瑶,周莹,黄辉等.疾病负担研究进展[J].中国公共卫生,2018,34(05):777-780.

什么是“年龄标化”?

在流行病学研究中,年龄是多种疾病的危险因素。以发病率为例,该指标反映了一定时期内,特定人群中癌症新发病例的情况。由于年龄是癌症发生的一个重要影响因素,年龄越大,发病率就越高。

 

如果两个国家的人群年龄结构相差很大,例如A市老年人口比例更大,B市年轻人口占比更高,直接比较两地癌症发病率的高低,我们不能确定发病率较高的市,是因为年龄构成不同还是因为其他影响因素(如饮食习惯、环境等)所导致。因此,需要用“年龄标化”的统计学方法,进一步处理数据,排除年龄影响因素的干扰,再来比较两地的发病率数据。

 

以发病率为例,即把原始数据套到一个“标准年龄结构人群里”,计算出”年龄标化发病率“,这样人群结构不同的A市和B市,就能在同一个指标尺度下进行“发病率”比较。年龄标化通常有“中标率”,即我国各地基于某一年份的中国人口年龄结构构成作为标准计算,国内不同地区的疾病数据比较采用的是“中标率”;另一种是“世标率”,即用世界标准人口构成机型标化计算,适用于国与国之间的指标比较。

 

同样地,以死亡率为例,应特别注意各之间地人口构成的差异。用标准化死亡率进行比较才能得出正确结论。如甲、乙两地在未标化前的肺癌死亡率相同,但实际上乙地人群的肺癌死亡率要明显地高于甲地,其原因在于甲地男性老年人口居多,而肺癌的死亡率又与年龄和性别有关,所以用未标化率进行比较时,就会得出甲乙两地肺癌死亡率相同的错误结论。

 

参考资料:

 

张科宏教授:年龄标化的患病率 – 丁香公开课 (dxy.cn)

科学网—癌症(粗)发病率与标化发病率的区别 – 杨雷的博文 (sciencenet.cn)

WHO年龄标化死亡率定义及计算方法

沈洪兵,齐秀英. 流行病学 [M]. 人民卫生出版社. 2015.

疾病的“经济负担”怎么计算?

疾病经济负担是由于发病、伤残(失能)和过早死亡给患者本人、家庭以及社会带来的经济损失,和由于预防治疗疾病的费用。通过计算疾病的经济负担,可以从经济层面上研究或比较不同疾病对人群健康的影响。

总疾病经济负担包括直接疾病经济负担、间接疾病经济负担和无形疾病经济负担。

直接经济负担:指直接用于预防和治疗疾病的总费用,包括直接医疗经济负担和直接非医疗经济负担两部分。直接医疗经济负担是指在医药保健部门购买卫生服务的花费,主要包括门诊费(如挂号费、检查费、处置费、诊断费、急救费等)、住院费(如手术费、治疗费等)和药费等。直接非医疗经济负担包括和疾病有关的营养费、交通费、住宿费、膳食费、陪护费和财产损失等。

间接经济负担:指由于发病、伤残(失能)和过早死亡给患者本人和社会带来的有效劳动力损失而导致的经济损失。具体包括:劳动工作时间损失、个人工作能力和效率降低造成的损失、陪护病人时损失的劳动工作时间、精神损失等。

无形经济负担:指患者及亲友因疾病在心理、精神和生活上遭受的痛苦、悲哀、不便等生活质量下降而产生的无形损失。

 

参考资料:

陈文. 卫生经济学 [M]. 人民卫生出版社. 2017.

李茜瑶,周莹,黄辉等.疾病负担研究进展[J].中国公共卫生,2018,34(05):777-780.