Search
Close this search box.

Cost-effectiveness of HPV vaccination

Cost-effectiveness of HPV vaccination

The cost-effectiveness of HPV vaccines: Global Evidence

When implementing vaccination strategies, health economic evaluation is an important indicator to consider alongside vaccine safety and efficacy. The economic evaluation of HPV vaccines is critical to improving the design of vaccination programs and optimizing resource allocation. The slow development of cervical cancer and other HPV-related diseases means the protective effect of the HPV vaccine can last for years. Researchers usually use mathematical models to estimate the long-term cost-effectiveness of vaccine interventions. One of the most commonly used health economics evaluation metrics is the incremental cost-effectiveness ratio (ICER), calculated as the ratio of incremental cost to incremental effect. The WHO recommends that an intervention strategy is not cost-effective if the ICER exceeds three times GDP per capita.

Table 1: HPV vaccine cost-effectiveness in selected high-income countries

CountryYearPhaseType of vaccine/ type of preventionFraction of coverage %Age of inoculation  Price (USD) / dose  Vaccination dose  ICER/ QALY  GDPICER/ GDPCost-effectiveness level
United States2015dynamic6/11/16/1810012  34.99255.8370.63Very cost-effective
2014dynamic16/1810012  37250 0.67Very cost-effective
 2015dynamic16/1810012  73.483 1.32Cost-effective
 2011static16/1810012134359.041 1.06Cost-effective
 2015static16/1810035-45  166102 2.97Cost-effective
 2004dynamic6/11/16/18701210034.305 0.08Very cost-effective
 2004dynamic16/187012100313.087 0.23Very cost-effective
 2003mixing6/11/16/187012300314.226 0.25Very cost-effective
 2003mixing16/187012300320347 0.36Very cost-effective
 2016mixing16/183312-17  32.526 0.58Very cost-effective
Canada2008static6/11/16/1810012120323.35144.3100.53Very cost-effective
 2008static16/1810012120335.358 0.80Very cost-effective
 2009dynamic6/11/16/188010120313.830 0.31Very cost-effective
 2007mixing16/188010120317.990 0.41Very cost-effective
 2008dynamic167187512120337.677 0.85Very cost-effective
Britain2013dynamic6/11/16/18851395345760413241.11Cost-effective
 2004static6/11/16/1880121003+147.602 1.15Cost-effective
 2014dynamic6/11/16/18801295 12.483 0.30Very cost-effective
 2014dynamic16/18801295 21504 0.52Very cost-effective
Australia2009static16/188012115316710455140.37Cost-effective
Denmark2014dynamic161885122031423746.6350.31Very cost-effective
 2014dynamic6/11/16/1885122035.748 0.12Very cost-effective
Germany2009dynamic16/185012-17110315.434472680.33Very cost-effective
 2009dynamic6/11/16/185012-1711037.835 0.17Very cost-effective
Nether-land2012mixing16/1810012-17150.4326865484590,55Very cost-effective
2008mixing16/188512100329.602 0.61Very cost-effective
 2008static16/18501288.1326199 0.54Very cost-effective
 2008static6/11/16/18501288.1*321459 0.44Very cost-effective

Table 2: Cost-effectiveness of HPV vaccines in selected low- and middle-income countries and regions

YearCountry/regionResearch perspectiveAge of vaccination (years)Cover rate (%)CPD (dollar)CYP ( dollar)ICFR (USD / QALY)ICER (Screen) (USD / QALY)Core conclusion
2011ThailandSOC12802.311.5Cost savingsABCd
2012ThailandHCP11100343.08.890Abcd
2011ThailandSOC/ HCP<121004301354.01264216000ABCd
2010MalaysiaSOC1396158.0499.518603ABCd
2010MalaysiaSOC159652.4183.74158ABCd
2008VietnamSOC9702.613.11554ABCd
2008IndiaSOC<12702.311.5Cost savingsABCd
2007BrazilSOC9-12706.532.7Cost savingsABCd
2012BrazilHCP128030.830.8ABCd
2012BrazilHCP128515.2Abcd
2007BrazilSOC12906.533.0Cost savingsAbcD
2012BrazilHCP12905.0-120.025.0-556.0abod
2008Chile  HCP1210070.0355.033309  aBcd
Poland373.0597.035602 
2012PeruSOC<12827034.911717aBcd
2010LithuaniaHCP126172Abcd
2008MexicoHCP1082131.71192711631ABCd
2007MexicoHCP12804.502aBcD
2012East AfricaSOC<12700.65.82.926ABCd
2009South AfricaSOC/HCP<1280120.0804.01521aBcd
2011GAVISOC12702.011.5230Abcd
2008GAVISOC12702.011.5622Abcd
2008Latin America and the Caribbean regionSOC9-12705.028.8392aBcd
2008Asian-Pacific regionSOC<12702.011.5622ABCd
2009The whole worldHCP121004.7-10.9131-408ABCd

(Table 1&2 source: H.Q. Wang, F.F. Zhao, & Y. Zhao. (2019). Expert consensus on immunoprophylaxis for cervical cancer and other human papillomavirus-associated diseases. Chinese Journal of Preventive Medicine, 53 (8), 761-803. doi:10.3760/cma.j.issn.0253-9624.2019.08.001)

Tables 1 and 2 show the cost-effectiveness results of HPV vaccines in some high-income and low- and middle-income countries. Most of the studies found HPV vaccines cost-effective or very cost-effective, but due to differences in vaccine types, costs, target populations, model assumptions, parameters, and calculations, there are some differences in the incremental cost-effectiveness ratios observed in the studies. For future policy decision-making, it is necessary to consider the actual situation, particularly each country’s economic development level, vaccine types, and target population, to conduct specific analyses.

Incremental cost-effectiveness studies of HPV vaccination in high-income countries have shown that the bivalent and quadrivalent HPV vaccines are cost-effective for eligible women, even under different vaccination coverage conditions, whether in dynamic, static, or mixed studies. Although economic evaluation studies conducted in developing countries are limited compared with those in developed countries, growing evidence shows HPV vaccination is also cost-effective for eligible women in developing countries [1].

Health economics studies of HPV vaccination in China

Several studies have been conducted in China to develop dynamic and static models to measure the cost-effectiveness of HPV vaccination [2, 3]. Table 3 summarizes some of the economic evaluations of HPV vaccination conducted in China.

Table 3: Selected health economics studies of HPV vaccination in China

Author, yearType of vaccinevaccine pricesite coverageVax ageKey findings
Mark, 2014 [4]Three doses of bivalent vaccinePAHO price is about $39 with an administered cost of $15100%12 years oldAt a cost of approximately $3,210 per disability-adjusted life-year (DALY) reduction, vaccination is extremely cost-effective
Liu, 2016 [5]Three doses of bivalent vaccineThree doses cost 1900 CNY with an administered fee of 54 CNY70%12-55 yearsCombined with cervical cancer screening, HPV vaccination is cost-effective before 23 years old for rural women and before 25 years old for urban women by age 25.
Zhang, 2016 [6]Three doses of bivalent vaccine247 CNY per dose70%12 years oldVery cost-effective when vaccine prices are 87-630 RMB (rural) and 87-750 RMB (urban)
Mo, 2017 [7]Three vaccination schedules with 2/4/9-valent vaccinesEstimated at 2,000-3,000 CNY for three doses based on Hong Kong prices; Nine-valent vaccine price being 1.1 times of the 4-valent vaccine; Vaccination costs around US $4.8420%12 years oldOnly when screening coverage increased to 60% ~ 70% did the HPV2 and screening combination strategy become economically feasible.   The combination of the HPV4/9 vaccine with current screening strategies for adolescent girls was highly cost-effective 
Zou, 2020 [8]Two doses of bivalent domestic vaccine$99.8070%9-14 yearsUsing a willingness-to-pay threshold of 3 times China’s gross domestic product (GDP) per capita, vaccination combined with screening with rapid HPV testing every 5 years would be the most cost-effective intervention. When the total cost of vaccination is reduced to $50, the combination of vaccination and screening will be more cost-effective than screening alone, even at a willingness-to-pay threshold of 1x GDP per capita.

One study compared the cost-effectiveness of 61 intervention strategies, including a combination of various screening methods at different frequencies with and without vaccination and vaccination alone. The study found that HPV vaccination combined with HPV screening every five years was the most cost-effective compared to no intervention, with an ICER of $21,799 per quality-adjusted life year (QALY) (Figure 1).

Figure 1. Cost-effectiveness frontiers (Left) and cost-effectiveness acceptability curves (right) for all intervention strategies

(Figure Source: Zou, Z., Fairley, C. K., Ong, J. J., Hocking, J., Canfell, K., Ma, X., Zhuang, G. (2020). Domestic HPV vaccine price and economic returns for cervical cancer prevention in China: a cost-effectiveness analysis. The Lancet Global Health, 8(10 ), e1335-e1344.)

The same study also evaluated the correlation between vaccine pricing and the cost-effectiveness of various interventions. The findings indicate that as vaccine prices decrease, cost-effectiveness improves (Figure 2). When the cost of vaccines is capped at less than $50 for two doses, any strategy integrating HPV vaccination for girls aged 9 to 14 with cervical cancer screening tends to be more cost-effective than screening alone at lower willingness-to-pay thresholds (around the per capita GDP). Furthermore, vaccination combined with a visual acetic acid screening method conducted every five years proved the most cost-effective approach. If the vaccine price is less than $10 for two doses, it becomes more cost-effective than screening alone at any willingness-to-pay threshold.

Figure 2. Cost-effectiveness acceptability curves for all strategies at various costs of vaccination

(Image source: Zou, Z., Fairley, C. K., Ong, J. J., Hocking, J., Canfell, K., Ma, X., Zhuang, G. (2020). Domestic HPV vaccine price and economic returns for cervical cancer prevention in China: a cost-effectiveness analysis. The Lancet Global Health, 8(10 ), e1335-e1344.)

Key factors affecting HPV vaccines’ cost-effectiveness

Factors such as economic development level, vaccine type, the target population, and HPV infection prevalence could affect the vaccine’s cost-effectiveness outcomes. For example, a systematic review found that although there was heterogeneity in the methods used to measure cost-effectiveness, 10 of the 12 included studies concluded that the nine-valent HPV vaccine was cost-effective, and 2 studies did not [9]. Another systematic review indicated that it was unclear if the nine-valent vaccine was more cost-effective than the previously marketed bivalent and quadrivalent vaccines due to the unclear pricing of the nine-valent vaccine [10]. In these systematic reviews, researchers found that factors such as vaccine type, price, vaccination coverage, and target population are important parameters affecting the outcome of HPV vaccine cost-effectiveness analysis, with vaccine cost being the most important factor affecting the sensitivity analysis.

HPV vaccine types and price

The market-available vaccines target different HPV genotypes, and cost-effectiveness results vary due to differences in vaccine coverage and vaccine prices in different regions. For example, a Singapore study found that the ICER for bivalent vaccination was $10,392 Singapore dollar (SGD) SGD/QALY and that for quadrivalent vaccination was $9,071 SGD/QALY compared to no vaccination [11], while a UK study found that if the price per dose of the bivalent vaccine was 22-41% lower than that of the quadrivalent vaccine, the two could produce the same cost-effectiveness [12].

Age of vaccine recipients

Most studies concluded that HPV vaccination for girls aged 9-14 years and for women who are not yet sexually active are the most cost-effective interventions. In a systematic review of studies focusing on the cost-effectiveness of HPV vaccination for adult women aged 26 years and older, four of six studies found that HPV immunization was not cost-effective for adult women aged 26 years and older (ICER: $65,000-$192,000/QALY) [12]. One UK study showed that HPV vaccination in this population was only cost-effective vaccine price was below £20/dose and lifetime vaccine protection for women when no loss of immunity over time was considered [12]. A study from Lao PDR indicated that the vaccination could be cost-effective with a catch-up vaccination for women up to age 75 years, and the existing schoolgirls vaccination program was strongly subsidized [12].

Gender of vaccine recipients

HPV vaccination of males can indirectly reduce the rate of infection in the population with whom they have sex while reducing lesions such as genital warts. Some countries (e.g., the United States and Australia) have expanded the vaccination population to boys aged 9-14. However, evidence on the cost-effectiveness of expanding HPV vaccination to boys or conducting gender-neutral HPV vaccination programs is sparse and inconsistent.

A systematic review of articles published between 2005 and 2015 explored the economic evaluation of HPV vaccination for boys [13]. Among the 15 studies included, 53% showed that HPV vaccination among boys was cost-effective, and 7% found it was potentially cost-effective. In contrast, another systematic review covering 17 developed country studies came to the opposite conclusion, noting that there is little evidence that extending HPV vaccination programs to heterosexual men is cost-effective, but targeted vaccination of men having sex with men (MSM) is a cost-effective option (although the specific implementation of this strategy needs to be further explored) [14]. Similar conclusions were supported by another systematic review that included four studies that explored HPV vaccination in the MSM population, two of which found that HPV vaccination targeting the MSM group was cost-effective in preventing anal cancer-related disease [15]. Another recently published systematic review study included nine studies conducted in high-income countries (such as Spain, Germany, Italy, Belgium, the United Kingdom, and Canada), comparing the gender-neutral and female-only vaccination strategies. Four of the studies demonstrated a two-dose gender-neutral HPV vaccination strategy was more cost-effective compared to a female-only vaccination program [16].

Geographic Areas

Based on WHO recommendations, an intervention program is cost-effective when the cost per quality-adjusted life year (QALY) saved is less than three times the GDP per capita. Hence, the economic level of the geographic area targeted for vaccination impacts the cost-effectiveness calculation. A systematic review of 12 papers on the economic evaluation of HPV vaccines in low- and middle-income countries such as Laos, Malaysia, Iran, India, Thailand, South Africa, and Brazil shows that in 11 of the included studies, HPV vaccination among girls aged 9-14 years was cost-effective, Factors impacting cost-effectiveness include age, intervention coverage, and vaccine dose administered. Vaccination is cost-effective as a stand-alone intervention if coverage reaches 70-100% [1].

Implementation

A retrospective study focusing on HPV vaccination in low- and middle-income countries found that combining HPV vaccination with visual inspection with acetic acid (VIA) screening was the most cost-effective intervention compared to HPV vaccination or screening alone [17]. In addition, increasing evidence supports that the antibody titers produced after 2-dose bivalent vaccination were comparable to the 3-dose schedule, while a Malaysian study predicted a savings of nearly $57.29 million by applying a 2-dose schedule [18]. New evidence also suggests that HPV single-dose regimens are comparable to two- and three-dose regimens. Although there is a lack of evidence on the single-dose regimen’s long-term protection, the World Health Organization revised its HPV vaccine position paper in December 2022 to recommend a single-dose regimen for females between the ages of 9 and 20 years [19].

A modeling study showed that two doses of routine vaccination of 14-year-olds would be the best cost-saving strategy for future national immunization programs, compared with no vaccination, in a supply-constrained and on-label use scenario (NND:150-220, net cost savings: $15,164 million – $22,034 million, ROI: 7-14, depending on vaccine type). The study also found that if the WHO-recommended single-dose vaccination schedule were approved in China, redistributing the remaining second dose of vaccine in the routine vaccination cohort to add a catch-up vaccination for the 20-years-old would be the most efficient strategy (NNDs:73-107), and would be even more cost-saving compared to implementing routine single-dose vaccination for 14-year-olds only (Net Cost Savings: US$4,127 million-US$6,035 million, ROI:19-37) [20].


Content Reviewer: Kelly Hunter, Menglu Jiang

Page Editor: Jiaqi Zu


References:

  1. Okeah BO, Ridyard CH: Factors influencing the cost-effectiveness outcomes of HPV vaccination and screening interventions in low-to-middle-income countries (LMICs): a systematic reviewApplied Health Economics and Health Policy 2020, 18:641-654.
  2. Wang H, Zhao F, Zhao Y: Expert consensus on immune prevention of human papillomavirus-related diseases such as cervical cancer. Chinese Journal of Preventive Medicine, 2019, 53(8):761-803.Mo X, Tobe RG, Wang L, Liu X, Wu B, Luo H, Nagata C, Mori R, Nakayama T: Cost-effectiveness analysis of different types of human papillomavirus vaccination combined with a cervical cancer screening program in mainland ChinaBMC infectious diseases 2017, 17(1):1-12.
  3. Jit M, Brisson M, Portnoy A, Hutubessy R: Cost-effectiveness of female human papillomavirus vaccination in 179 countries: a PRIME modelling studyThe Lancet Global Health 2014, 2(7):e406-e414.
  4. Liu Y-J, Zhang Q, Hu S-Y, Zhao F-H: Effect of vaccination age on cost-effectiveness of human papillomavirus vaccination against cervical cancer in ChinaBMC Cancer 2016, 16(1):164.
  5. Zhang Q, Liu Y-J, Hu S-Y, Zhao F-H: Estimating long-term clinical effectiveness and cost-effectiveness of HPV 16/18 vaccine in ChinaBMC cancer 2016, 16(1):848-848.
  6. Mo X, Gai Tobe R, Wang L, Liu X, Wu B, Luo H, Nagata C, Mori R, Nakayama T: Cost-effectiveness analysis of different types of human papillomavirus vaccination combined with a cervical cancer screening program in mainland ChinaBMC Infect Dis 2017, 17(1):502.
  7. Zou Z, Fairley CK, Ong JJ, Hocking J, Canfell K, Ma X, Chow EP, Xu X, Zhang L, Zhuang G: Domestic HPV vaccine price and economic returns for cervical cancer prevention in China: a cost-effectiveness analysisThe Lancet Global Health 2020, 8(10):e1335-e1344.
  8. Mahumud RA, Alam K, Keramat SA, Ormsby GM, Dunn J, Gow J: Cost-effectiveness evaluations of the nine-valent human papillomavirus (HPV) vaccine: Evidence from a systematic reviewPloS one 2020, 15(6):e0233499.
  9. Ng SS, Hutubessy R, Chaiyakunapruk N: Systematic review of cost-effectiveness studies of human papillomavirus (HPV) vaccination: nine-valent vaccine, gender-neutral and multiple age cohort vaccinationVaccine 2018, 36(19):2529-2544.
  10. Lee VJ, Tay SK, Teoh YL, Tok MY: Cost-effectiveness of different human papillomavirus vaccines in SingaporeBMC Public Health 2011, 11(1):1-11.
  11. Jit M, Choi YH, Edmunds WJ: Economic evaluation of human papillomavirus vaccination in the United KingdomBmj 2008, 337.
  12. Soe NN, Ong JJ, Ma X, Fairley CK, Latt PM, Jing J, Cheng F, Zhang L: Should human papillomavirus vaccination target women over age 26, heterosexual men and men who have sex with men? A targeted literature review of cost-effectivenessHuman vaccines & immunotherapeutics 2018, 14(12):3010-3018.
  13. Sinisgalli E, Bellini I, Indiani L, Sala A, Bechini A, Bonanni P, Boccalini S: HPV vaccination for boys? A systematic review of economic studiesEpidemiol Prev 2015, 39(4 Suppl 1):51-58.
  14. Yahia M-BBH, Jouin-Bortolotti A, Dervaux B: Extending the human papillomavirus vaccination programme to include males in high-income countries: a systematic review of the cost-effectiveness studiesClinical drug investigation 2015, 35(8):471-485.
  15. Setiawan D, Wondimu A, Ong K, Van Hoek AJ, Postma MJ: Cost Effectiveness of Human Papillomavirus Vaccination for Men Who have Sex with Men; Reviewing the Available EvidencePharmacoEconomics 2018, 36(8):929-939.
  16. Linertová R, Guirado-Fuentes C, Medina JM, Imaz-Iglesia I, Rodríguez-Rodríguez L, Carmona-Rodríguez M: Cost-effectiveness of extending the HPV vaccination to boys: a systematic reviewJ Epidemiol Community Health 2021.
  17. Abidi S, Labani S, Singh A, Asthana S, Ajmera P: Economic evaluation of human papillomavirus vaccination in the Global South: a systematic reviewInternational Journal of Public Health 2020:1-15.
  18. Li Y, Chen S, Huang X, Fang Y, Zhao Q: Clinical efficacy and economics of human papillomavirus vaccine. Modern Preventive Medicine, 2018, 45(15).
  19. World Health Organization: WHO. (2022, December 20). WHO updates recommendations on HPV vaccination schedule [Press release]. WHO. https://www.who.int/news/item/20-12-2022-WHO-updates-recommendations-on-HPV-vaccination-schedule
  20. You, T., Zhao, X., Hu, S., Gao, M., Liu, Y., Zhang, Y., Qiao, Y., Jit, M., & Zhao, F. (2022). Optimal allocation strategies for HPV vaccination introduction and expansion in China accommodated to different supply and dose schedule scenarios: A modelling study. EClinicalMedicine, 56, 101789.

代表性地区的基本情况、接种政策及效果、宣传推动情况

(1) 成都市

 

基本情况

成都市2022年度GDP为20817.5亿元,排名全国城市第七。成都市出台了《健康城市建设推动健康中国行动创新模式成都市宫颈癌综合防控试点工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为13-14岁在校且无HPV疫苗接种史女生。免疫程序为国产二价0-6二剂次、进口二价0-1-6三剂次、进口四价0-2-6三剂次。资助政策为国产二价疫苗(沃泽惠)免费,其它疫苗补贴600元/人,并自付20元/剂接种费。疫苗接种按照属地化管理原则,由学校所在地预防接种单位负责。截至2022年1月,目标人群首针接种率达90.04%[14]。

宣传推动

成都市开展多形式、多载体的健康教育宣传。形式包括讲座、知晓日、义诊咨询、专题课程、专题活动等,载体包括宣传册、宣传栏、展板、电视、微信、视频号、抖音平台等,覆盖相关医疗机构300余、社区300余个、和公众场所90余个。面向适龄女孩及监护人、适龄女性及全体市民开展广泛宣教,宣传材料发放至近9万名群众,讲座活动覆盖近2万名群众。宣教内容包括HPV疫苗接种、两癌防控、其它女性常见疾病防控等。

(2) 济南市

 

基本情况

济南市2022年度GDP为12027.5亿元,位列全国城市排名20。2021年,济南市出台《健康城市建设推动健康中国行动创新模式试点一济南市宫颈癌综合防治工作方案(2021—2025年)》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为≤14周岁且无HPV疫苗接种史的在校七年级女生。免疫程序为国产二价0-6二剂次。资助政策免费接种。疫苗接种按照属地化管理原则,安排分班级分时段前往学校所在地的预防接种单位进行接种。截至2022年11月,目标人群首针接种率达
94.4%[15].

宣传推动

济南市开展多形式、多载体的健康教育宣传。形式包括采访、线上线下专题活动,载体包括网络媒体、纸媒、科普展板、宣传手册、子宫颈癌与HPV疫苗知识读本、济南HPV疫苗接种手册,宣教人群广泛涵盖全体市民,宣教内容包括HPV疫苗接种、两癌防控等知识。

(3) 鄂尔多斯市

 

基本情况

鄂尔多斯市2022年度GDP为5613.44亿元,全国地级市第45位。2021年,鄂尔多斯市出台了《健康城市建设推动健康鄂尔多斯行动创新模式工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

2020年8月,鄂尔多斯市在准格尔旗率先开展HPV疫苗免费接种项目。目标人群为全市当年13-18岁在校且无HPV疫苗接种史女生。免疫程序为进口二价0-1-6三剂次,

2023年起调整为13-14岁女孩0-6二剂次。资助政策为疫苗免费,自付20元/剂接种费。组织方式为疫苗接种服务中心根据任务安排联系学校,有规划的通知适龄女孩前来完成HPV疫苗接种。截至2022年11月,目标人群首针接种率接近70%[16]。

2022年8月,启动准格尔旗和达拉特旗高三女生接种四价和九价HPV疫苗的试点工作,利用暑假时间展开接种,力争在2023年年底达成90%的接种目标[17]。自鄂尔多斯之后,由政府主导的HPV疫苗惠民行动在多地等涌现。值得注意的是,近年来多主体参与到HPV疫苗支持项目,如慈善总会、医院、妇联等为主体单位牵头组织开展了一些公益活动。

宣传推动

鄂尔多斯市开展多形式、多载体的健康教育宣传。形式包括讲座、知晓日、义诊咨询、专题课程、专题活动等,载体包括宣传册、宣传栏、展板、电视、微信、视频号、抖音平台等,宣教人群广泛涵盖在校女孩及监护人,适龄女性及全体市民。宣教内容包括HPV疫苗接种、两癌防控、其它女性常见疾病防控等。

(4) 西安市

 

基本情况

西安市2022年度GDP为11486.51亿元,排名全国第22位。2021年,西安市出台了《西安市健康城市建设推动健康中国行动创新模式试点宫颈癌综合防治工作方案》等一系列相关政策推动适龄女孩HPV疫苗接种工作。

接种政策及效果

目标人群为全市年龄满13周岁(初中)在校女生。免疫程序为国产二价0-6二剂次,进口二价0-1-6三剂次,进口四价和进口九价0-2-6三剂次。接种政策为自愿自费。各区(县)合理设立HPV疫苗专项疫苗接种门诊承担接种任务,并及时将接种信息统一录入儿童免疫规划信息平台。

宣传推动

西安市出台了《西安市宫颈癌综合防治宣传方案》(市健办发〔2022〕12号)。通过媒体宣传、社区活动、义诊等形式,宣传册、宣传栏、展板、电视、微信公众号、报纸等载体普及宫颈癌防治相关知识。

(5) 西藏自治区

 

基本情况

西藏自治区2022年度GDP为2132.64亿元,经济总量整体规模相对其他省份较小,人均GDP处于全国中等偏下水平。2022年出台《西藏自治区妇女“两癌”综合防治工作实施方案》等系列政策推动适龄女孩HPV疫苗接种。

接种政策及效果

目标人群为13-14岁在校女生。免疫程序为国产二价0-6二剂次。资助政策为免费。由学校组织,接种者在商定接种时间携带个人身份证明材料与法定监护人一同前往定点接种单位接种。

宣传推动

充分利用网络、电视、广播、报刊等媒介,以群众喜闻乐见的宣传方式,对适龄在校女生HPV疫苗接种工作的意义及内容进行广泛宣传。

近年来各地HPV疫苗惠民项目信息

“疾病负担”指标解读

疾病负担(burden of disease, BOD)是指疾病造成的失能(伤残)、生活质量下降和过早死亡对健康和社会造成的总损失,包括疾病的流行病学负担和经济负担两个方面。

 

在疾病的流行病学方面,衡量疾病负担的常用指标包括传统指标和综合指标。

 

传统指标

传统疾病负担的衡量指标包括:用于描述和反映健康状况与水平的常规指标,如死亡人数、伤残人数和患病人数等绝对数指标;以及用来比较不同特征人群疾病分布差异的指标,如发病率、伤残率、患病率、死亡率、门诊和住院率等相对数指标。

 

上述传统疾病负担的衡量指标基本上只考虑了人口的生存数量,而忽略了生存质量,不够全面;但优势在于资料相对计算方便,结果直观,可用于各种疾病的一般性描述。

 

综合指标

疾病负担不等同于死亡人数,综合指标弥补了传统指标的单一性,且可以让各种不同疾病造成的负担之间相互比较。

 

潜在寿命损失年(YPLL):通过疾病造成的寿命损失来估计疾病负担的大小。但忽略了疾病造成的失能对生存质量的影响。

 

伤残调整寿命年(DALYs):将死亡和失能相结合,用一个指标来描述疾病的这两方面的负担。它包括因早死造成健康生命年的损失(YLL)和因伤残造成健康生命年的损失(YLD),即DALY=YLL+YLD。目前,DALY是国内外一致公认的最具代表性、运用最多的疾病负担评价指标。

 

健康期望寿命(HALE):指具有良好健康状态的生命年以及个体在比较舒适的状态下生活的平均预期时间,综合考虑生命的质量和数量两方面。

 

 

随着疾病负担研究的深入,其测量范围从流行病学负担扩大到经济负担。

 

疾病经济负担是由于发病、伤残(失能)和过早死亡给患者本人、家庭以及社会带来的经济损失,和由于预防治疗疾病所消耗的经济资源。

详细见:疾病的“经济负担”怎么计算?

 

参考资料:

陈文. 卫生经济学 [M]. 人民卫生出版社. 2017.

李茜瑶,周莹,黄辉等.疾病负担研究进展[J].中国公共卫生,2018,34(05):777-780.

什么是“年龄标化”?

在流行病学研究中,年龄是多种疾病的危险因素。以发病率为例,该指标反映了一定时期内,特定人群中癌症新发病例的情况。由于年龄是癌症发生的一个重要影响因素,年龄越大,发病率就越高。

 

如果两个国家的人群年龄结构相差很大,例如A市老年人口比例更大,B市年轻人口占比更高,直接比较两地癌症发病率的高低,我们不能确定发病率较高的市,是因为年龄构成不同还是因为其他影响因素(如饮食习惯、环境等)所导致。因此,需要用“年龄标化”的统计学方法,进一步处理数据,排除年龄影响因素的干扰,再来比较两地的发病率数据。

 

以发病率为例,即把原始数据套到一个“标准年龄结构人群里”,计算出”年龄标化发病率“,这样人群结构不同的A市和B市,就能在同一个指标尺度下进行“发病率”比较。年龄标化通常有“中标率”,即我国各地基于某一年份的中国人口年龄结构构成作为标准计算,国内不同地区的疾病数据比较采用的是“中标率”;另一种是“世标率”,即用世界标准人口构成机型标化计算,适用于国与国之间的指标比较。

 

同样地,以死亡率为例,应特别注意各之间地人口构成的差异。用标准化死亡率进行比较才能得出正确结论。如甲、乙两地在未标化前的肺癌死亡率相同,但实际上乙地人群的肺癌死亡率要明显地高于甲地,其原因在于甲地男性老年人口居多,而肺癌的死亡率又与年龄和性别有关,所以用未标化率进行比较时,就会得出甲乙两地肺癌死亡率相同的错误结论。

 

参考资料:

 

张科宏教授:年龄标化的患病率 – 丁香公开课 (dxy.cn)

科学网—癌症(粗)发病率与标化发病率的区别 – 杨雷的博文 (sciencenet.cn)

WHO年龄标化死亡率定义及计算方法

沈洪兵,齐秀英. 流行病学 [M]. 人民卫生出版社. 2015.

疾病的“经济负担”怎么计算?

疾病经济负担是由于发病、伤残(失能)和过早死亡给患者本人、家庭以及社会带来的经济损失,和由于预防治疗疾病的费用。通过计算疾病的经济负担,可以从经济层面上研究或比较不同疾病对人群健康的影响。

总疾病经济负担包括直接疾病经济负担、间接疾病经济负担和无形疾病经济负担。

直接经济负担:指直接用于预防和治疗疾病的总费用,包括直接医疗经济负担和直接非医疗经济负担两部分。直接医疗经济负担是指在医药保健部门购买卫生服务的花费,主要包括门诊费(如挂号费、检查费、处置费、诊断费、急救费等)、住院费(如手术费、治疗费等)和药费等。直接非医疗经济负担包括和疾病有关的营养费、交通费、住宿费、膳食费、陪护费和财产损失等。

间接经济负担:指由于发病、伤残(失能)和过早死亡给患者本人和社会带来的有效劳动力损失而导致的经济损失。具体包括:劳动工作时间损失、个人工作能力和效率降低造成的损失、陪护病人时损失的劳动工作时间、精神损失等。

无形经济负担:指患者及亲友因疾病在心理、精神和生活上遭受的痛苦、悲哀、不便等生活质量下降而产生的无形损失。

 

参考资料:

陈文. 卫生经济学 [M]. 人民卫生出版社. 2017.

李茜瑶,周莹,黄辉等.疾病负担研究进展[J].中国公共卫生,2018,34(05):777-780.